

Site Classification to AS2870-2011 - Residential Slabs and Footings

1. Introduction

Strata Geoscience and Environmental Pty Ltd was commissioned to provide a Site Classification to AS2870-2011 for:

Site Details and Ke	y Investigation Outcomes				
Site Address	Unit 1 13-15 Barr Street Lady Barron				
Property Owner/Client	CBM Sustainable Design				
Development	New dwelling				
Date of Investigation	13/9/21				
Key Geotechnical Limitations to Site Development	Reactive soil phases, potential for abnormal soil moisture gradients, potential for colluvial and bedrock outcroppings				
Key Recommendations	Site drainage around foundations recommended				
Site Classification to AS2870-2011	Class M				
Subsidiary Site Classification to AS2870-	NA				
2011 (TO BE USED FOR PLUMBING					
DESIGN SEE APPENDIX 3)					
Site Classification to AS4055- 2012	N2				

2. Scope

It is the scope of this investigation to consider geotechnical factors affecting the current development plan (if available). Namely;

- Geotechnical Drilling of minimum 1 Bore (s) to 1.8 m or refusal (whichever first) with logging, sampling and in-situ testing as required
- Site Classification to AS2870-2011 Residential Slabs and Footings.

The above scope has been determined in consultation with the Client and is subject to time and budgetary considerations. Geotechnical investigations are informative processes and further works may be required depending upon the findings of the results of this investigation.

3. Site Investigation

Please refer to Appendices for the results of field/laboratory investigation (where relevant) including site photographs, bore logs, bearing capacity and other relevant data.

4. Interpretation

Geotechnical Parameter	Results				
General Comments	FLAT SITE, UNIT SITED IN CLEAR AREA REMOVED FROM EXISTING VEGETATION				
Site Geology (MRT Tas 1:250000)	Dgaas				
Geotechnical Risks:					
Slope Instability	Not mapped hazard band (DPAC 2023) accessed via LISTMAP).				
Soft/Collapsing Soil	Recommend maximum 75kPa working bearing pressures at a minimum 600mm or refusal.				
Groundsurface Movement	Slight-Moderate (variability anticipated over the site).				
Erosion Potential	Soils may be sensitive to wind and water erosion. Risks to be controlled by a soil and water management plan.				
Surface Water	Not observed				
Shallow Groundwater/Perched Water	Not encountered- localised seasonal groundwater tables known to existed in localised landscape- upslope interceptor drain age around foundations required.				
Uncontrolled Fill/Disturbed Soils	None observed				
Impacting Vegetation (Onsite or on adjacent sites)	Trees onsite warranting design consideration				
Proposed or recent removal of building/structures	Unknown				
Proposed or recent removal of trees	Large trees to be removed as discussed above				
Excavation Difficulties	Possible – near surface granite floaters and bedrock known to occur in localised landscape.				
Bulk Earthworks (Completed/partially completed/not proposed)	None				

5. Recommended Foundation Design Parameters

• The following foundation design parameters are recommended:

	Recommended Footing Designs							
	Slab	Pad/Strip	Pier/Pile Footings					
Founding material *1	UNDISTUBED DENSE SANDS	UNDISTUBED DENSE SANDS	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK					
Recommended Minimum Founding Depth (mm or m)	MIN 600MM	MIN 600MM	PIER/PILE SUPPOPRTED MIN 1200MM OR REFUSAL					
Max Allowable Bearing Pressure (kPa)	75	75	75					
Indicative Soil Ys (mm)	20-40mm	20-40mm	20-40mm					

*¹Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

It must be emphasised that in classifying the site, Strata Geoscience and Environmental P/L did not place sole reliance on the soil bore logs as a means of being an absolute representation of all subsurface features and conditions over the site. Any persons relying upon this document must not assume that subsurface conditions across the entire site will be identical to that represented in the bore logs.

Relevant information and guidance used in classifying the site includes several or all of the following:

1. Publications from Standards Australia, CSIRO, Foundation and Footings Society, Australian Geomechanics Society.

2. Well established and relevant knowledge of the behaviour of local soils and processes affecting soil behaviour (eg ephemeral springs, perched water tables, unstable slopes, collapsing soils, vegetation, etc).

3. The broad experience of the site classifier.

4. Specific investigations from nearby areas.

5. Past Performance of existing structures and foundations (where relevant and known)

6. Engineering Assessment of likely characteristic ground surface movement (ys) based upon estimated lpt values and/or laboratory derived lss values where relevant.

6. Construction Recommendations

6.1 Pre Construction

- Results of this investigation MUST be confirmed when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report.
- Design depth to refusal for bored pier/driven pile designs may show variability over the site and may need to be considered in any contractor quotation. Construction machinery will show different depths to refusal that what is indicated in this investigation.
- Test pitting/piling with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Screw piles should be driven to a minimum depth as nominated by the foundation designer to ensure lateral stability of each pile. Test piling at all corners of each building must occur to ensure this.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.

- Where rock is encountered the in relation to the Foundation Recommendations the following terms should be noted as per AS2870-2011 Residential Slabs and Footings
 - Rock Outcrops Where a footing or edge beam encounters a single local rock outcrop over a length less than 1 m, the depth of the footing or edge beam may be reduced by up to one-third, provided the amount of top and bottom reinforcement is doubled and extended 500 mm past the section with reduced depth. Alternatively, the footing may be stepped or raised, provided the structural stiffness is preserved as per AS2870-2011 Clause 3.1.6.
 - Partial Rock Outcrops Where part of the footing is on rock and part is on soil, provision for movement at the change between the two types of foundation shall be made by articulation of the superstructure or strengthening of the footing system. On Reactive Sites (M, H1 and H2) where part of the footing is on rock and part is on soil, the design shall be in accordance with engineering principles as per AS2870-2011 Clause 3.1.7.
 - Design for complete rock foundation Where the edge beam or footing is to be founded entirely on rock, the footing or beam may be replaced by a levelling pad of concrete or mortar as per AS2870-2011 Clause 3.1.8.
- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) MUST be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- Uncontrolled Fill Any FILLING that does not meet the requirements of AS2870- 2011 Clause 2.5.3(b). This clause allows up to 0.8m of uncontrolled SAND FILL and up to 0.4m of uncontrolled CLAY FILL without impacting on the above site classification following that all foundations are founded on the natural soils through the filling.
- **Rolled Fill** Consists of material compacted in layers by repeated rolling with an excavator or similar equipment. The depth of rolled fill shall not exceed 0.6m compacted in layers of not more than 0.3m thick for sand material or 0.3m compacted in layers of not more than 0.15m thick for other materials as per AS2870-2011 Clause 6.4.2(b).
- Controlled Fill Fill that will be required to support structures or associated pavements, or for which engineering properties are to be controlled – Refer to AS2870-2011 Clauses 2.5.3, 2.5.3(a), and 6.4.2(a) – i.e. where a specification has been provided on the type, quality, and compaction requirements for filling at a site and the earthworks have been deemed compliant or have complied with the requirements of the specification.
- The recommendations of CSIRO Building Technology File 18 be adopted.
- An apron of paving around the building perimeter sloping away from foundations with a minimum fall of 1:60 be considered for Class M, H-1, H-2, E and P sites.

6.2 During Construction

Throughout construction it is highly recommended that:

- Inspection of the natural soil surface after footings excavation but prior to construction is required by Strata Geoscience and Environmental in accordance with Appendix D of AS 2870-2011. Failure to comply with this recommendation will void all classifications and recommendations contained in this report. The site classification may be changed at this time depending upon the nature of the founding surface which is dependant in part on foundation design.
- Site cutting should be avoided if possible and if it occurs below 500mmbgs occurs then reclassification MUST be commissioned.
- Fill MUST NOT be used as a founding substrate.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Shrinkage cracking is almost inevitable in concrete slabs and is associated with the drying process. Therefore care must be taken where brittle or sensitive floor coverings are proposed, or where a polished slab is planned. The risk of damage can be reduced by not installing floor coverings until after shrinkage has occurred, which can take in excess of 3 months, or by using flexible mortars and appropriate sheeting material.
- Vertical barriers to prevent root incursions around founding zones should be considered in areas where gardens are to be established near foundations.

6.3 Post Construction

After construction, there are certain practices that the owner/occupier should be aware of to prevent excessive foundation movements. The owner will be responsible for any damage or loss associated with disregard for the recommendations contained in CSIRO Building Technology Files 18 "Foundation Maintenance and Footings Performances: A Homeowners Guide" available through CSIRO.

It is furthermore recommended that:


- Gardens or large shrubs or trees must not be established immediately adjacent to foundations
- Garden beds or lawn near foundations must not be excessively watered.
- Leaking underground services and downpipes or gutters must be fixed immediately.

S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

	3	strata	In	dica	ative	Pro	ofile	Lo	g		BH01	-
Clier	nt			1 1 1						Coords		-
Proje	ect:	1								n.		
Dra Ty	ypo:									Bearing		63 L
Doiling	a Mot									RL SE Logged	E WS	
1.00	111	LI LI	LILI	E E	1111	TIT	1.L.T	TIT	ET E	Date:		
	- 1		Soil	12 1	Rock	Wee	thenns	Prac.	Specin	g (r Sampi	ing and Ins	tu Test
		Material Description	V SoftV Locks SoftLooka FimM Dense SoftDansa									
E	- 3		Den Den	×	- 5							
Depth (mm)	Graphic Log		ULO DI	100	E E					w K	Test Res	the second
ă	8		S ISS	No.		EW HW	MAR P	68 E	1.0	1 TYPE RUDS	Conter	
1000		BROWNISH GREY SAND	SMILO	SE N	(P			1000			1. States	TE:
					+++++							
		TRENDING GREY SAND	(SP) LOO	SE NP								
				100								
				1								
				12								
		TRENDING MEDIUM DEN	ec.				+++					-
1000		LOWER BOUNDARY UND										
											111	
					1111							
1600												
1000	-											=
				100								
2000	<u> (</u>											
	-											
				333								
2500	-			8								_
2000	- 8						111					-
				8								
3000	-						111					-
30.0	- 22											-
				8								
											1.1.0.1	
3500												-
4000							111					_
-000	-											
4500					1111							
900												-
				目							1111	
5000												-
												-
		mî mîni										
3500				BOR	ETERM	NATE	DAT 1	8 M	1.1.2	11.11		
3500	8											
1 I	11			13	1111	111		1	1111			

Appendix 2 Indicative Bore Logs

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geofenhnical Purposes: Refer to AS1726-1993 (Appendix A), The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

		or Divisions Particle size mm Symbo		Typical Names	Laboratory Classification					
- 28	BOULDERS	200			% < 0.075 mm (2)	Plasticity of fine fraction	$C_s = \frac{D_{es}}{D_{es}}$	$C_{e} = \frac{(D_{ee})^{2}}{(D_{ee})(D_{ee})}$	NOTES	
075mm)	COBBLES	0			1					
then 0.075		63	gw	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	-	X	Between 1 and 3	(1) identify fines by the method give	
is larger	GRAVELS (more than	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	0-5 12-50	-		comply with bove	for fine-grained sols.	
61mm	haif of coarse	medium	GM	Silty gravels, gravel-sand-silt mixtures (1)	12-50	Below 'A' line or Pi<4		- 122		
se Gouneito Mos than 63 m	fraction is larger than 2.36 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	12-50 12-50	Above 'A' line and Pi>7	-	177	(2) Bordenine	
Islepter p JRU usus e fraction	SANDS		sw	Weil graded sands and gravely sands, little or no fines	2	-	*6	Between 1 and 3	classifications occur when the percentage of fines (fraction	
	(more than half of coarse	0.6	SP	Poorly graded sands and gravely sands, little or no fines	0 0-5 0-5 12-50	os _		comply with bove	Smaller than 0.075 min size) is greater than 5% and less	
	fraction is smaller than 2.36 mm)	medium	SM	Silty sands, sand silt mixtures (1)	8 12-50	Below 'A' line or Pi<4		्यस	than 12%. Bordenine	
4		fne 0.075	80	Clayey sands, sand-clay mixtures (1)	12-50	Above 'A' line and PI>7		9 <u>25</u> 4	classifications require the use of SP-SM, GW- GC.	
A 0075 mm		5	ML	Inorganic sits, very fine sands, roch fiour, sity or clayey fine sands or clayey sits with slight plasticity	deedfcation	For	classificati	ticity Chai on of fine gra	ined soils	
actuals mem is smaller than		LTS & CLAYS Iquid Limit (50%)		LAYS Inorganic clays of low to tt s50%) CL medium plasticity, gravely Cl clays, sandy clays, sity		p 63 mm for a			n or coarse gr	
			OL	Organic sits and clays of low plasticity	prizzer a				1	
and man			мн	inorganic sits, mic-aceous or diato-maceous fine sands or sits, elastic sits	f material index (%)				NOP MORES	
material lass	SILTS & CU (Liquid Limit		сн	Inorganic clays of high plasticity, fat clays	Plastic #	57		-	pi i	
		~~	ан	Organic silts and clays of high plasticity	prodetion	Zau	6a.			
more than half of	HIGHLY ORI SOILS	GANIC	FT	Feat and other highly organic solls	Utes the gra	6 11 71	n a Liqu	id Limit (%)	2 8 S S	

Boil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as paie, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary). Refer to AS 1725-1993, A2.4 and A3.3.

Soll Moleture Condition: is based on the appearance and feel of soll. Refer to AS 1726-1993, A2.5.

Term	Description	
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.	
Moist	Soli feels cool, darkened in colour. Cohesive solts can be moulded. Granular solts tend to cohere.	
Wet	Soli feels cool, darkened in colour. Cohesive solis usually weakened and free water forms on hands when handling. Granular solis tend to cohere and free water forms on hands when handling.	

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s) can be assessed using a simple field tool appropriate for cohesive sols, in conjunction with the relevant calibration. Refer to AS 1725-1993, Table A4.

	Consistency -	Essentially	Cohesive	solic .	1	Soll Parti	ole Sizec
Төпті	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength G, (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range
Very soft	Oozes between fingers when squeezed in hand.	VS	0-2	<12	<3	BOULDERS COBBLES	>200 mm 63-200 mm
Soft	Easily moulded with fingers.	8	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Film	Can be moulded by strong pressure of fingers.	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
SUT		St	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Not possible to mould with fingers.	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400		

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Solis: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive solis, in conjunction with the relevant calibration. Refer to AS 1725-1993, Table AS; BS5930-1999, p117.

Consistency - Essentially Non-Cohesive Solis							
Term	Symbol	SPT N Value	Field Guide	Density Index (%)			
Very loose	٧L	64	Foot imprints readily	0-15			
Loose	L	4-10	Shovels Easly	15-35			
Medium dense	MD	10-30	Shoveling difficult	35-65			
Dense	D	30-50	Pick required	65-85			
Very dense	VD	>50	Picking difficult	85-100			

Standard Penetration Test (SPT): Refer to: AS 1289.5.3.1-2004. Example report formals for SPT results are shown below:

Test Report	Penetration Recictance (N)	Explanation / Comment				
4, 7, 11	N=18	Full penetration; N is reported on engineering borehole log				
18, 27, 32	N-59	Full penetration; N is reported on engineering borehole log				
4, 18, 30/15 mm	N is not reported	30 blows causes less than 100 mm penetration (3 st interval) – test discontinued				
30/80 mm N is not reported		30 blows causes less than 100 mm penetration (1 ⁴ Interval) - test discontinued				
TW N<1		Rod weight only causes full penetration				
hw	N=1	Hammer and rod weight only causes full penetration				
hb N is not reported		Hammer bouncing for 5 consecutive blows with no measurable penetration – I discontinued				

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including:

- (a) Rock type (Table A5, (a) and (b))
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A3, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soil. Boundaries between weathering grades may be abrupt or gradational.

		Rook Material Weathering Classification
Weathering Grade	Symbol	Definition
Residual Soli	RS	Soli-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.
Extremely Weathered Rock	жw	Rock is weathered to such an extent that it has 'sol' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.
Highly Weathered Rock HW		Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerals. The intact rock strength is generally much weaker than that of the fresh rock.
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerals. The infact rock strength is usually noticeably weaker than that of the fresh rock.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.
Notes:	0	Ø

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

2. Extremely weathered rock is described in terms of soil engineering properties.

3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.

The "Distinctly Weathered (DW)' class as defined in AS 1726-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rook Strength):

ſ

Strength of Rook Material

Term	Symbol	EL s0.03		Field Guide to Strength				
Extremely Low	EL			Easity remoulded by hand to a material with soil properties.				
Very Low	VL.	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.				
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dual sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be triable and break during handling.				
Medium	м	×0.3	s1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.				
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock rings under hammer.				
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.				
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; nock rings under hammer.				

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Discontinuity Decor	lotion: Re	fer to AS	1725-1993.	Table A10

Aniso	tropio Fabrio	Roughin	Roughness (e.g. Planar, Smooth is abbreviated PI / Sm)			Sm) Ca	855	Other	
BED	Bedding				Rough or Integular (Ro)		1	Cly	Clay
FOL	Foliation	Stepped	(Stp)		Smooth (Sm)		Ж. —	Fe	tron
LIN	Mineral lineation	:			Slickensided (SI)		ш	Co	Coai
	Defect Type				Rough (Ro)		IV.	Carb	Carbonaceous
P	Lamination Parting	Undulating (Un)			Smooth (Sm)		v		Soli Infil Zone
BP	Bedding Parting				Slickensided (SI)	(8I) VI		Gz	Quartz
FP	Cleavage / Foliation Parting				Rough (Ro)	VII		CA	Calcite
J, Js	Joint, Joints	Planar (Pt)		Smooth (Sm)	VIII		Chi	Chiorite
SZ	Sheared Zone	- 123			Slickensided (SI)		(X	Fy	Pyrite
cz	Crushed Zone	Apertur		Infilling		80 - an		int	Intersecting
BZ	Broken Zone	Closed	CD	No visible	coating or infil	Clean	Сп	Inc	Incipient
HFZ	Highly Fractured Zone	Open	OP	Surfaces	discoloured by mineral/s	Stain	St	DI	Drilling induced
AZ	Alteration Zone	Filed	FL.	Visible m	inerai or soli infili <1mm	Veneer	Wr	н	Horizontal
VN	Vein	Tight	TI	Visible m	ineral or soil infil >1mm	Coating	Ct	V	Vertical

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spaoing: On the geotechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

Defect Spacing			Bedding Thic (Sedimentary Rook	이야지 않는 것은 것을 물었다.	Defect Spacing in 3D		
Spaoing/Width (mm)	Decoriptor Symbol		Descriptor	Spaoing/Width (mm)	Term	Decoription	
		l l	Thinly Laminated	< 6	Blocky	Equidmensional	
<20	Extremely Close	EC	Thickly Laminated	6-20	Tabular	Thickness much less than length or width	
20 - 60	Very Close	vc	Very Thinly Bedded	20 - 60	Columnar Height much greate cross section		
60 - 200	Close	C .	Thinly Bedded	60-200	P10		
200 ~ 600	Medium	м	Medium Bedded	200 - 600	Defect Persistence		
600 - 2000	Wide	W	Thickly Bedded	600 - 2000	(areal extent)		
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000	18 VG		
>5000	Extremely Wide	EW		1	Trace length of defect given in metres		
	the second s						

Symbols

The ist below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Res	utis 🔿		Test Symbols
PI	Plasticity Index	¢	Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C.,	Undrained Cohesion	SPT	Standard Penetration Test
ц	Liquidity index	¢,	Residual Cohesion	CFTu	Cone Penetrometer (Plezocorie) Test
00	Dry Density	ø	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0,	Undrained Angle of Internal Priction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	ď.,	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	¢,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
oc	Organic Content	π,	Coefficient of Volume Compressibility	UCS	Uniaxial Compressive Strength
WPI	Weighted Plasticity Index	054	Coefficient of Secondary Compression	Pm	Pressuremeter

	20 0	Test Resu	10	Test Symbols	
WLS	Weighted Linear Shrinkage	.e	Voids Ratio	FSV	Fleid Shear Vane
DoS	Degree of Saturation	ď	Constant Volume Friction Angle	DGT	Direct Shear Test
APD	Apparent Particle Density	q,/q,	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate
$\mathbf{S}_{\mathbf{p}}$	Undrained Shear Strength	q,	PANDA Cone Resistance	٨	Point Load Test (axial)
q,	Unconfined Compressive Strength	4an	Point Load Strength Index	D	Point Load Test (diametral)
R	Total Core Recovery	RQD	Rock Quality Designation	L	Point Load Test (Irregular lump)

Stroundwater level on the date shown	Water Inflow	- Water Outflow	
--------------------------------------	--------------	-----------------	--

Appendix 3 Site Classification and Plumbing Specifications

AS2870-2011 SOIL CLASSIFICATION	ON SITE SOIL CONDITIONS	DIFFERENTIAL	SEWER & Stormwater GRADE	SWIVEL* (Sbeen Expansion)	SWIVEL/COMBO * (100mm Expansion)	EXPANDA JOINTS *	CREEP SLOPE SITES	DRAWING	
A	Most Sand & Rock sites	0 + 10mm	1:60 Miximum Not neces					Na	
s	Slightly mactive Solts	10 - 20mm		Not necessary	Not necessary	Not necessary	Not necessary	Not necessary	
м	Moderatively reactive soils	20 - 40mm				These	SP 100 8 SP 101		
н	Highly reactive solls	40 - 60mm		As per AS3500.5		At Junctions within 1 mtr of internal building	termed P sites and are referred	SP 102	
H2	Very highly reactive soils	60 - 75mm	1:40 Minimum	using 2 units outside and an Expansion Joint	As necessary using either or both Bend or Straight units	footprint and every 6 mtrs.	to in Drawing SP 105	5P 102A	
E	Extremely reactive solts	75 + mm		at every riser Not applicable	suspended from	Differential Movement		SP 102A	
Р	Solis affected by Abnormal moisture and conditions	Fran. 20 + mm	As per Offerential Novement	to suspended sub-floors		See AS2032-2006 Clause 6.4.2.2-4 for suspension requirements		5P 105A	
E: Engineer or loca	al Authority detai	is take preceden	ce over this ch	wrt	To be read	in conjunction with Sta	rm Plastics de	awings sho	
					GRADE RATIO	FALL IN 10 mtrs	ANGLE	GRADE %	
470 onn		-1.1	1	-	1:100	100 mm	.57	1.0	
110 000	5 N - 4	T	2	2	1:80	125 mm	.71	1.25	
	1 23000	CO	* 1	Gentleut Salati / Epinte Akt	1:60	167 mm	.95	1.65	
((0	SWIVEL Science Generation: Communit	~ E		1:50	200 mm	1.14	2.0	
			2.0		201408	5.585.547 S.555 C	VII.45	2.5	

CERTIFICATE	OF QUALIFIED PERSON – AS	SSES	SABLE	Section 321	
To:	CBM SUSTAINABLE DESIGN		Owner /Agent Address J Suburb/postcode	Form 55	
Qualified perso	on details:				
Qualified person:	SVEN NIELSEN				
Address:	17 LITTLE ARTHUR STREET		Phone No:	0413545358	
	NORTH HOBART		Fax No:		
Licence No: AO		TACC	NSULTING.C	COM.AU	
Qualifications and Insurance details:	MEngSc CPSS PI INSURANCE PUBLIC LIABILITY CONTACT FOR DETAILS	Directo	otion from Column 3 c r of Building Control's ination)		
Speciality area of expertise:	INDICATIVE Site Classification to AS2870-2011/AS4055-2006	Directo	ption from Column 4 (r of Building Control's nination)		
Details of work					
Address:	UNIT 1 13-15 BARR STREET		Lo	ot No:	
	LADY BARRON		Certificate of title	e No:	
The assessable item related to this certificate:	INDICATIVE Site Classification to AS2870- 2011/AS4055-2021	-	 (description of the assessable item being certified) Assessable item includes – a material; a design a form of construction a document testing of a component, building system or plumbing system an inspection, or assessment, performed 		
Certificate deta	ils:				
Certificate type:	Ś	Schedule	n from Column 1 of 1 of the Director of Bu Determination)	uilding	
This certificate is ir	relation to the above assessable item, at an building work, plumbing work or p Or	• •	•	·	

a building, temporary structure or plumbing installation:

In issuing this certificate the following matters are relevant -

Documents:	SR05397
Doodmontor	51(05357
Relevant	SEE REPORT WHERE RELEVANT
calculations:	
References:	
	Substance of Certificate: (what it is that is being certified)
AS2870-2011 A	
	Scope and/or Limitations
SEE RECOMMEN	NDATIONS AND WELL AS TERMS AND CONDITIONS CONTAINED WITHIN
THE RELEVANT	REPORT, ESPECIALLY NOTING:
-	RING AND ARCHITECTUAL PLANS TO BE SUBMITTED TO STRATA FOR TION AGAINST REPORT RECOMMEDATIONS PRIOR TO
	JCTION. FAILURE TO ENSURE THIS WILL VOID ALL CLASSIFICATIONS
	OMMENDATIONS CONTAINED IN THE REPORT
	G SURFACE INSPECTION OF ALL EXCAVATIONS PRIOR TO
	TION CONSTRUCTION BY STRATA IS MANDATORY AND FAILING TO
	SION THIS WILL VOID ALL CLASSIFICATIONS AND RECOMMENDATIONS
	ED IN THE REPORT. THIS IS TO ENSURE THAT ALL FOUNDATIONS ARE D RECOMMENDED FOUNDING SUBSTRATE AND NOT SOFT TOPSOILS
	ONTROLLED FILL (WHERE PRESENT)
	UTTING BEYOND 500MM OCCURS THEN THE SITE MUST BE
	SIFIED IN CONSULTATION WITH STRATA.
4. FORM VA	LID FOR 2 YEARS FROM THE DATE BELOW.
1	described in this soutificate
i certify the matters	s described in this certificate.

	Signed.	•	C	Certificate No:		Date:
Qualified person:	S NIELSEN	Ad		SR05397		27/9/23

Appendix 5 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client, the Client must inform Strata in writing of that information as soon as possible. Further advice will be provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Strata is not information supplied to Strata has been provided at the Client's cost. Any report is prepared on the assumption that the instructions and information supplied by a client, demand, charge, loss, damage, injury or expense whatsoever if Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charg

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011. Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase. The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a founding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classifications contained within this report are void. Classification is based upon a range of expected ground surface movement as indicated in AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and

accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability where any report is relied upon after three months from the date of the report, (unless otherwise provided in the report or required by the Australian Standard which the report purports to comply with), or the date when the Client advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. Soil depths and composition can vary due to natural and anthopogenic processes. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Furthermore where rocky profiles are encountered no comment is made about the potential size of liberated rocks from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- (ii) the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered in any way from the original provide by Strata.

Site Classification to AS2870-2011 - Residential Slabs and Footings

1. Introduction

Strata Geoscience and Environmental Pty Ltd was commissioned to provide a Site Classification to AS2870-2011 for:

Site Details and Ke	y Investigation Outcomes		
Site Address	Unit 2 13-15 Barr Street Lady Barron		
Property Owner/Client	CBM Sustainable Design		
Development	New dwelling		
Date of Investigation	13/9/21		
Key Geotechnical Limitations to Site Development	Reactive soil phases, potential for abnormal soil moisture gradients, potential for colluvial and bedrock outcroppings		
Key Recommendations	Site drainage around foundations recommended		
Site Classification to AS2870-2011	Class M		
Subsidiary Site Classification to AS2870-	NA		
2011 (TO BE USED FOR PLUMBING			
DESIGN SEE APPENDIX 3)			
Site Classification to AS4055- 2012	N2		

2. Scope

It is the scope of this investigation to consider geotechnical factors affecting the current development plan (if available). Namely;

- Geotechnical Drilling of minimum 1 Bore (s) to 1.8 m or refusal (whichever first) with logging, sampling and in-situ testing as required
- Site Classification to AS2870-2011 Residential Slabs and Footings.

The above scope has been determined in consultation with the Client and is subject to time and budgetary considerations. Geotechnical investigations are informative processes and further works may be required depending upon the findings of the results of this investigation.

3. Site Investigation

Please refer to Appendices for the results of field/laboratory investigation (where relevant) including site photographs, bore logs, bearing capacity and other relevant data.

4. Interpretation

Geotechnical Parameter	Results			
General Comments	FLAT SITE, UNIT SITED IN CLEAR AREA REMOVED FROM EXISTING VEGETATION			
Site Geology (MRT Tas 1:250000)	Dgaas			
Geotechnical Risks:				
Slope Instability	Not mapped hazard band (DPAC 2023) accessed via LISTMAP).			
Soft/Collapsing Soil	Recommend maximum 75kPa working bearing pressures at a minimum 600mm or refusal.			
Groundsurface Movement	Slight-Moderate (variability anticipated over the site).			
Erosion Potential	Soils may be sensitive to wind and water erosion. Risks to be controlled by a soil and water management plan.			
Surface Water	Not observed			
Shallow Groundwater/Perched Water	Not encountered- localised seasonal groundwater tables known to existed in localised landscape- upslope interceptor drain age around foundations required.			
Uncontrolled Fill/Disturbed Soils	None observed			
Impacting Vegetation (Onsite or on adjacent sites)	Trees onsite warranting design consideration			
Proposed or recent removal of building/structures	Unknown			
Proposed or recent removal of trees	Large trees to be removed as discussed above			
Excavation Difficulties	Possible – near surface granite floaters and bedrock known to occur in localised landscape.			
Bulk Earthworks (Completed/partially completed/not proposed)	None			

5. Recommended Foundation Design Parameters

• The following foundation design parameters are recommended:

	Recommended Footing Designs						
	Slab	Pad/Strip	Pier/Pile Footings				
Founding material *1	UNDISTUBED DENSE SANDS	UNDISTUBED DENSE SANDS	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK				
Recommended Minimum Founding Depth (mm or m)	MIN 600MM	MIN 600MM	PIER/PILE SUPPOPRTED MIN 1200MM OR REFUSAL				
Max Allowable Bearing Pressure (kPa)	75	75	75				
Indicative Soil Ys (mm)	20-40mm	20-40mm	20-40mm				

*¹Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

It must be emphasised that in classifying the site, Strata Geoscience and Environmental P/L did not place sole reliance on the soil bore logs as a means of being an absolute representation of all subsurface features and conditions over the site. Any persons relying upon this document must not assume that subsurface conditions across the entire site will be identical to that represented in the bore logs.

Relevant information and guidance used in classifying the site includes several or all of the following:

1. Publications from Standards Australia, CSIRO, Foundation and Footings Society, Australian Geomechanics Society.

2. Well established and relevant knowledge of the behaviour of local soils and processes affecting soil behaviour (eg ephemeral springs, perched water tables, unstable slopes, collapsing soils, vegetation, etc).

3. The broad experience of the site classifier.

4. Specific investigations from nearby areas.

5. Past Performance of existing structures and foundations (where relevant and known)

6. Engineering Assessment of likely characteristic ground surface movement (ys) based upon estimated lpt values and/or laboratory derived lss values where relevant.

6. Construction Recommendations

6.1 Pre Construction

- Results of this investigation MUST be confirmed when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report.
- Design depth to refusal for bored pier/driven pile designs may show variability over the site and may need to be considered in any contractor quotation. Construction machinery will show different depths to refusal that what is indicated in this investigation.
- Test pitting/piling with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Screw piles should be driven to a minimum depth as nominated by the foundation designer to ensure lateral stability of each pile. Test piling at all corners of each building must occur to ensure this.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.

- Where rock is encountered the in relation to the Foundation Recommendations the following terms should be noted as per AS2870-2011 Residential Slabs and Footings
 - Rock Outcrops Where a footing or edge beam encounters a single local rock outcrop over a length less than 1 m, the depth of the footing or edge beam may be reduced by up to one-third, provided the amount of top and bottom reinforcement is doubled and extended 500 mm past the section with reduced depth. Alternatively, the footing may be stepped or raised, provided the structural stiffness is preserved as per AS2870-2011 Clause 3.1.6.
 - Partial Rock Outcrops Where part of the footing is on rock and part is on soil, provision for movement at the change between the two types of foundation shall be made by articulation of the superstructure or strengthening of the footing system. On Reactive Sites (M, H1 and H2) where part of the footing is on rock and part is on soil, the design shall be in accordance with engineering principles as per AS2870-2011 Clause 3.1.7.
 - Design for complete rock foundation Where the edge beam or footing is to be founded entirely on rock, the footing or beam may be replaced by a levelling pad of concrete or mortar as per AS2870-2011 Clause 3.1.8.
- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) MUST be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- Uncontrolled Fill Any FILLING that does not meet the requirements of AS2870- 2011 Clause 2.5.3(b). This clause allows up to 0.8m of uncontrolled SAND FILL and up to 0.4m of uncontrolled CLAY FILL without impacting on the above site classification following that all foundations are founded on the natural soils through the filling.
- **Rolled Fill** Consists of material compacted in layers by repeated rolling with an excavator or similar equipment. The depth of rolled fill shall not exceed 0.6m compacted in layers of not more than 0.3m thick for sand material or 0.3m compacted in layers of not more than 0.15m thick for other materials as per AS2870-2011 Clause 6.4.2(b).
- Controlled Fill Fill that will be required to support structures or associated pavements, or for which engineering properties are to be controlled – Refer to AS2870-2011 Clauses 2.5.3, 2.5.3(a), and 6.4.2(a) – i.e. where a specification has been provided on the type, quality, and compaction requirements for filling at a site and the earthworks have been deemed compliant or have complied with the requirements of the specification.
- The recommendations of CSIRO Building Technology File 18 be adopted.
- An apron of paving around the building perimeter sloping away from foundations with a minimum fall of 1:60 be considered for Class M, H-1, H-2, E and P sites.

6.2 During Construction

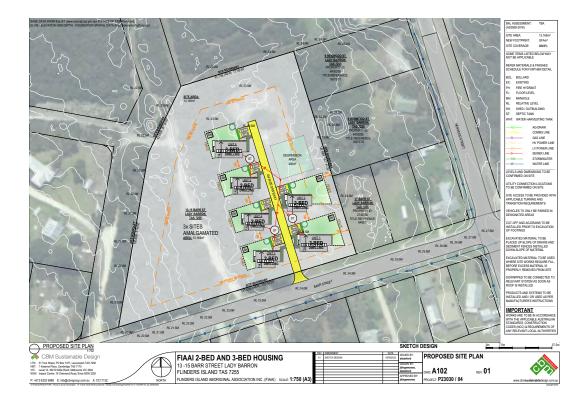
Throughout construction it is highly recommended that:

- Inspection of the natural soil surface after footings excavation but prior to construction is required by Strata Geoscience and Environmental in accordance with Appendix D of AS 2870-2011. Failure to comply with this recommendation will void all classifications and recommendations contained in this report. The site classification may be changed at this time depending upon the nature of the founding surface which is dependant in part on foundation design.
- Site cutting should be avoided if possible and if it occurs below 500mmbgs occurs then reclassification MUST be commissioned.
- Fill MUST NOT be used as a founding substrate.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Shrinkage cracking is almost inevitable in concrete slabs and is associated with the drying process. Therefore care must be taken where brittle or sensitive floor coverings are proposed, or where a polished slab is planned. The risk of damage can be reduced by not installing floor coverings until after shrinkage has occurred, which can take in excess of 3 months, or by using flexible mortars and appropriate sheeting material.
- Vertical barriers to prevent root incursions around founding zones should be considered in areas where gardens are to be established near foundations.

6.3 Post Construction

After construction, there are certain practices that the owner/occupier should be aware of to prevent excessive foundation movements. The owner will be responsible for any damage or loss associated with disregard for the recommendations contained in CSIRO Building Technology Files 18 "Foundation Maintenance and Footings Performances: A Homeowners Guide" available through CSIRO.

It is furthermore recommended that:


- Gardens or large shrubs or trees must not be established immediately adjacent to foundations
- Garden beds or lawn near foundations must not be excessively watered.
- Leaking underground services and downpipes or gutters must be fixed immediately.

S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

Client:	-	-	strata	Indicative Profile Log	BH01
Boil Book Weathering Processing (3) Sampling and having Trans. Specing (3) Sampling and having (3) Sampling (3)	Proje Dra Ty Drating	ect:			RL SEE WS Logged by
301 TRENDING GREY SAND (SP) LOOSE, NP 1	Depth (mm)	Graphic Log		V 55/10/26 Find Daries Find Daries V 2000 Daries V 2000 Daries V 2000 Daries V 2000 Daries Very High Him Him Him Find Find Find Coli	ing (1 Sampling and Insite Tex
001 001 1001 001	900		TRENDING GREY SAND	(SP)LOOSE NP	
30X 3	1000				
2000	1900				
3000 4000 4000 6000 BORE TERMINATED AT 1,5 M	2000				
400 400 400 600 BORE TERMINATED AT 1.5 M	2500	Sept. 1			
4500 BORE TERMINATED AT 1.5 M	3000	Sel 124 - 251 (2			
4500 6000 BORE TERMINATED AT 1,5 M	3500				
80RE TERMINATED AT 1.5 M	4000	199			
BORE TERMINATED AT 1.5 M	4500				
BORE TERMINATED AT 1.5 M	6000	1040			
	9900	1.41.55		BORE TERMINATED AT 1.6 M	

Appendix 2 Indicative Bore Logs

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geoleohnical Purposes: Refer to AS1726-1993 (Appendix A). The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

Major Divisions		Particle size mm	USCS Group Symbol	Group Typical Names		Typical Names Laboratory Classification						
	BOULDERS				% < 0.075 mm (2)	Plasticity of fine fraction	$C_{e} - \frac{D_{ee}}{D_{ee}}$	$C = \frac{(D_{m})^{2}}{(D_{m})(D_{m})}$	NOTES			
(imm	COBBLES	200										
then 0.075 r		63	GW	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	-	*	Between 1 and 3	(1) Identify fines by the method giver			
m is larger 0	GRAVELS	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	0-5 12-50	-		comply with bove	for fine-grained solis.			
61mm	half of coarse	medium	GM	Silty gravels, gravel-sand-silt mixtures (1)	12-50	Below 'A' line or Pi<4	_	- 24				
Coon in	fraction is larger than 2.35 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	4 12-50 12-50	Above 'A' line and Pi>7	-	-	(2) Bordenine			
material less	SANDS		sw	Weil graded sands and gravely sands, little or no fines	othe other	-	>6	Between 1 and 3	classifications occur when the percentage of fines (fraction			
then held of	(more than half of coarse	0.6	SP	Poorly graded sands and gravely sands, little or no fines	0 04po 0-5	-		comply with bove	smaller than 0.075 mm size) is greater than 5% and less			
di socu	fraction is smaller than 2.36 mm)	medium 0.2	SM	Billy sands, sand sit mixtures (1)	8 12-50	Below 'A' line or Pi<4		-	than 12%. Bordenine			
\$		fne 0.075	SC Clayey sands, sand-clay mistures (1)		12-50	Above 'A' line and PI>7			classifications require the use of SP-SM, GW- GC.			
0075 mm			ML	Inorganic sits, very fine sands, rock flour, sity or clayey fine sands or clayey sits with sight plasticity	deedfortion		classificat	ticity Char ion of fine gra	ined soils			
is smaller than	SILTS & CLA (Liquid Limit	0.000	CL CI	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, sity clays, lean clays	a 63 mm for a			n of coarse gr dun Hah				
			OL	Organic silts and clays of low plasticity	preserve in			1	10			
Fine GRAINED If of material lass than 63			мн	Inorganic sits, mic- aceous or diato-maceous fine sands or sits, elastic sits	Plastic Index (%)				Nor Maria			
	125351136538	SILTS & CLAYS (Liquid Limit >50%)		Inorganic clays of high plasticity, fat clays	0	and the second		0 	ni i			
				Organic sits and clays of high plasticity	adeton - K	1 1 MAR						
more than half.	HIGHLY OR	GANIC	PT	Peat and other highly organic soils	Use the gr		n a Liqu	uid Limit (%)				

Soil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary), Refer to AS 1725-1993, A2.4 and A3.3.

Soll Moleture Condition: Is based on the appearance and feel of soll. Refer to AS 1726-1993, A2.5.

Term	Description	
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.	
Moist	Soll feels cool, dankened in colour. Cohesive solls can be moulded. Granular solls tend to cohere.	
Wet	Soll feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.	

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s.) can be assessed using a simple field tool appropriate for cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table A4.

	Consistency -	Eccentially	Cohesive	e Solla		Soll Parti	ole Sizec
Төпт	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength G ₂ (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range
Very soft	Oozes between fingers when squeezed in hand.	VS	0-2	<12	<5	BOULDERS COBBLES	>200 mm 63-200 mm
Soft	Easily moulded with fingers.	8	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Film	Can be moulded by strong pressure of fingers.	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
SUT		81	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Not possible to mould with fingers.	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400		

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Solis: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table AS; BS5930-1999, p117.

	Consistency - Essentially Non-Cohesive Solis							
Term	Symbol	SPT N Value	Field Guide	Density Index (%)				
Very loose	VL.	04	Foot imprints readily	0-15				
Loose	L	4-10	Shovels Easly	15-35				
Medium dense	MD	10-30	Shoveling difficult	35-65				
Dense	D	30-50	Pick required	65-85				
Very dense	VD	>50	Picking difficult	85-100				

Standard Penetration Test (SPT): Refer to: AS 1289.6.3.1-2004. Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment					
4, 7, 11 N=18		Full penetration; N is reported on engineering borehole log					
18, 27, 32 N=59		Full penetration; N is reported on engineering borehole log					
4, 18, 30/15 mm N is not reported		30 blows causes less than 100 mm penetration (3 st interval) - test discontinued					
30/80 mm N is not reported		30 blows causes less than 100 mm penetration (1 ⁴ Interval) – test discontinued					
TW .	N<1	Rod weight only causes full penetration					
hw N<1		Hammer and rod weight only causes full penetration					
No N is not reported		Hammer bouncing for 5 consecutive blows with no measurable penetration - tes discontinued					

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including:

- (s) Rock type (Table A5, (a) and (b))
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A3, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soll. Boundaries between weathering grades may be abrupt or gradational.

		Rook Material Weathering Classification
Weathering Grade	Symbol	Definition
Residual Soli	RS	Soli-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerals. The intact rock strength is generally much weaker than that of the fresh rock.
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerais. The intact rock strength is usually noticeably weaker than that of the fresh rock.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.
Notes:	ð	W

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

- 2. Extremely weathered rock is described in terms of soil engineering properties.
- 3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.
- The "Distinctly Weathered (DW)" class as defined in AS 1726-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rook Strength):

Strength of Rook Material

Term	Symbol	Point Index	(MPa)	Field Guide to Strength
Extremely Low	EL	s0.03		Easity removided by hand to a material with soil properties.
Very Low	VL.	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dual sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	м	×0.3	\$1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock nogs under hammer.
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weater due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Discontinuity	Decartption	Refer to AS	1725-1993.	Table A10.

Anieo	tropio Fabrio	Roughn	Roughness (e.g. Planar, Smooth is abbreviated PI / Sm) Class						Other	
BED	Bedding				Rough or Irregular (Ro)		1	CIY	Clay	
FOL	Foliation	Stepped	(Stp)		Smooth (Sm)		11	Fe	tron	
LIN	Mineral lineation				Slickensided (SI)		III.	Co	Coal	
	Defect Type				Rough (Ro)		IV.	Carb	Carbonaceous	
P	Lamination Parting	Undulati	ng (Lk	0	Smooth (Sm)	Smooth (Sm) V		Sint	Soli Infil Zone	
BP	Bedding Parting				Slickensided (SI) VI		VE	œ	Quartz.	
FP	Cleavage / Foliation Parting				Rough (Ro)	- mil	VII	CA	Calcite	
1, 15	Joint, Joints	Planar (F	PQ		Smooth (Sm)	33	VIII	Chi	Chiorite	
sz	Sheared Zone				Slickensided (SI)		DX.	Fy	Pyrite	
CZ	Crushed Zone	Apertur		Infilling				int	Intersecting	
BZ	Broken Zone	Closed	CD	No visible	No visible coating or Infil		Cn	Inc	Incipient	
HFZ	Highly Fractured Zone	Open	OP	Surfaces discoloured by mineral/s		Stain	St	DI	Drilling Induced	
AZ	Alteration Zone	Filed	FL	Visible mineral or soll infill <1mm		Veneer	Vr	н	Horizontal	
VN	Vein	Tight	Π.	Visible m	ineral or solt infil >1mm	Coating	Ct	V	Vertical	

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spaoing: On the geolechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

Delect Spacing			Bedding Thic (Sedimentary Rook :	승규가의 공격을 물러 가지 않는 것이 좋다.	Defect Spacing in 3D		
Spacing/Width (mm)	Descriptor	Symbol	Decoriptor	Spaoing/Width (mm)	Term	Description	
	Ĩ		Thinly Laminated	<6	Blocky	Equidimensional	
<20	Extremely Close	EC	Thickly Laminated	6 - 20	Tabular	Thickness much less than length or width	
20 - 60	Very Close	vc	Very Thinly Bedded	20 - 60	Columnar	Height much greater than cross section	
60 - 200	Close	c	Thinly Bedded	60-200	90		
200 ~ 600 Medium M		м	Medium Bedded	200 - 600	1	Defect Persistence	
600 - 2000	Wide	w	Thickly Bedded	600 ~ 2000	(areal extent)		
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000			
>6000	Extremely Wide	EW	-	- + +	trace lengt	h of defect given in metres	
	the second s						

Symbols

The itst below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Resi	utis	1	Test Symbols
PI	Plasticity Index	¢	Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C,	Undrained Cohesion	SPT	Standard Penetration Test
u	Liquidity index	¢ _s	Residual Cohesion	CPTu	Cone Penetrometer (Plezocorie) Test
00	Dry Density	ø	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0,	Undrained Angle of Internal Priction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	ď.,	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	¢,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
oc	Organic Content	π,	Coefficient of Volume Compressibility	UCS	Uniaxial Compressive Strength
WPI	Weighted Plasticity Index	۰.	Coefficient of Secondary Compression	Pm	Pressuremeter

Tect Recults					Test Symbols		
WLS	Weighted Linear Shrinkage	e	Voids Ratio	FSV	Field Shear Vane		
DoS	Degree of Saturation	ď	Constant Volume Friction Angle	DGT	Direct Shear Test		
APD	Apparent Particle Density	q,/q,	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate		
$\mathbf{S}_{\mathbf{k}}$	Undrained Shear Strength	q,	PANDA Cone Resistance	٨	Point Load Test (axial)		
٩.	Unconfined Compressive Strength	4an	Point Load Strength Index	D	Point Load Test (diametral)		
R	Total Core Recovery	RQD	Rock Quality Designation	E.	Point Load Test (Irregular lump)		

Groundwater level on the date shown	Water Inflow	- Water Outflow	
-------------------------------------	--------------	-----------------	--

Appendix 3 Site Classification and Plumbing Specifications

AS2870-2011 SOIL CLASSIFICATION	ON SITE SOIL CONDITIONS	DIFFERENTIAL	SEWER & Stormwater GRADE	SWIVEL* (Sbeen Expansion)	SWIVEL/COMBO * (100mm Expansion)	EXPANDA JOINTS *	CREEP SLOPE SITES	DRAWING
A	Most Sand & Rock sites	0 + 10mm						Na
s	Slightly mactive Solts	10 - 20mm	1:60 Minimum	Not necessary	Not necessary	Not necessary	to in Drawing SP 105	N/a
м	Moderatively reactive soils	20 - 40mm						SP 100 8 SP 101
н	Highly reactive solls	40 - 60mm		As per A\$3500.5	using either or both Bend or	At Junctions within 1 mir of internal building footprint and every 6 mtrs. As per Differential Movement		SP 102
H2	Very highly reactive soils	60 - 75mm	1:40 Minimum	using 2 units outside and an Expansion Joint				5P 102A
E	Extremely reactive solts	75 + mm		at every riser Not applicable				SP 102A
Р	Solis affected by Abnormal moisture and conditions	Fran. 20 + mm	As per Offerential Novement	to suspended sub-floors	alab	See AS2032-2006 Clause 6.4.2.2-4 for suspension requirements		5P 105A
E: Engineer or loca	al Authority detai	is take preceden	ce over this ch	wrt	To be read	in conjunction with Sta	rm Plastics de	awings sho
					GRADE RATIO	FALL IN 10 mtrs	ANGLE	GRADE %
470 onn		-1.1	1	-	1:100	100 mm	.57	1.0
110 000	5 N - 4	The	2	2	1:80	125 mm	.71	1.25
	1 23000	C.	*) E	Gentleme Balasi I Tjorte Akti	1:60	167 mm	.95	1.65
((C	0	SWIVEL Science Colonautorit Conservation	~ F	- Ta T	1:50	200 mm	1.14	2.0
			2.0		201408	5.585.547 S.555 C	VII.45	2.5

CERTIFICATE	OF QUALIFIED PERSON – AS	SSES	SABLE	Section 321			
To:	CBM SUSTAINABLE DESIGN		Owner /Agent Address Suburb/postcode	-orm 55			
Qualified perso	on details:						
Qualified person:	SVEN NIELSEN						
Address:	17 LITTLE ARTHUR STREET	Phone No:	0413545358				
	NORTH HOBART	Fax No:					
Licence No: AO	1443 – SS Email address: SVEN@STRATACONSULTING.COM.AU						
Qualifications and Insurance details:	MEngSc CPSS PI INSURANCE PUBLIC LIABILITY CONTACT FOR DETAILS	Director	escription from Column 3 of the ector of Building Control's termination)				
Speciality area of expertise:	INDICATIVE Site Classification to AS2870-2011/AS4055-2006	ption from Column 4 o r of Building Control's iination)					
Details of work							
Address:	UNIT 2 13-15 BARR STREET	Lot No:					
	LADY BARRON		Certificate of title No:				
The assessable item related to this certificate:	INDICATIVE Site Classification to AS2870- 2011/AS4055-2021	 (description of the assessable item being certified) Assessable item includes – a material; a design a form of construction a document testing of a component, building system or plumbing system an inspection, or assessment, performed 					
Certificate deta	ils:						
Certificate type:	Ś	Schedule 1	n from Column 1 of 1 of the Director of Bui Determination)	ilding			
This certificate is ir	relation to the above assessable item, at an building work, plumbing work or p Or		•	·			

a building, temporary structure or plumbing installation:

In issuing this certificate the following matters are relevant -

Documents:	
Documents.	SR05396
Relevant	SEE REPORT WHERE RELEVANT
calculations:	
References:	
	Substance of Cartificatory (1977) 1977 - 19
AS2870-2011 A	Substance of Certificate: (what it is that is being certified)
A52070-2011 A	55E55IMEINI
	Scope and/or Limitations
SEE RECOMMEN	NDATIONS AND WELL AS TERMS AND CONDITIONS CONTAINED WITHIN
THE RELEVANT	REPORT, ESPECIALLY NOTING:
	RING AND ARCHITECTUAL PLANS TO BE SUBMITTED TO STRATA FOR
	TION AGAINST REPORT RECOMMEDATIONS PRIOR TO
	JCTION. FAILURE TO ENSURE THIS WILL VOID ALL CLASSIFICATIONS
-	OMMENDATIONS CONTAINED IN THE REPORT
	G SURFACE INSPECTION OF ALL EXCAVATIONS PRIOR TO FION CONSTRUCTION BY STRATA IS MANDATORY AND FAILING TO
	SION THIS WILL VOID ALL CLASSIFICATIONS AND RECOMMENDATIONS
	ED IN THE REPORT. THIS IS TO ENSURE THAT ALL FOUNDATIONS ARE
	D RECOMMENDED FOUNDING SUBSTRATE AND NOT SOFT TOPSOILS
	INTROLLED FILL (WHERE PRESENT)
	UTTING BEYOND 500MM OCCURS THEN THE SITE MUST BE
	FIED IN CONSULTATION WITH STRATA.
	LID FOR 2 YEARS FROM THE DATE BELOW.
I certify the matters	s described in this certificate.

	Signed		Certifica	te No:	Date:
Qualified person:	S NIELSEN	fl-	SR	05396	27/9/23

Appendix 5 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client, the Client must inform Strata in writing of that information as soon as possible. Further advice will be provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Strata is not information supplied to Strata has been provided at the Client's cost. Any report is prepared on the assumption that the instructions and information supplied by a client or all additional information clients are available to the client, the client must inform strata in writing of the services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not lia

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011, Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase. The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a change in the site classification are to be incurred by the client. Furthermore any costs associated with delayed works associated with a founding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classification s contained within this report are void. Classification is based upon a range of expected ground surface movement as indicated in AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and

accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability where any report is relied upon after three months from the date of the report, (unless otherwise provided in the report or required by the Australian Standard which the report purports to comply with), or the date when the Client advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. Soil depths and composition can vary due to natural and anthopogenic processes. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Furthermore where rocky profiles are encountered no comment is made about the potential size of liberated rocks from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- (ii) the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered in any way from the original provide by Strata.

Site Classification to AS2870-2011 - Residential Slabs and Footings

1. Introduction

Strata Geoscience and Environmental Pty Ltd was commissioned to provide a Site Classification to AS2870-2011 for:

Site Details and Ke	y Investigation Outcomes
Site Address	Unit 3 13-15 Barr Street Lady Barron
Property Owner/Client	CBM Sustainable Design
Development	New dwelling
Date of Investigation	13/9/21
Key Geotechnical Limitations to Site Development	Uncontrolled fill (from future site clearing), reactive soil phases, potential for abnormal soil moisture gradients, potential for colluvial and bedrock outcroppings
Key Recommendations	Site drainage around deepened foundations recommended
Site Classification to AS2870-2011	Class P – ALERT TO TREES WITHIN ZONE OF INFLUENCE OF FUTURE FOUNDATIONS AND UNCONTROLLED FILL/DISTURBED PROFILES
Subsidiary Site Classification to AS2870-	Class M
2011 (TO BE USED FOR PLUMBING	
DESIGN SEE APPENDIX 3)	
Site Classification to AS4055- 2012	N2

2. Scope

It is the scope of this investigation to consider geotechnical factors affecting the current development plan (if available). Namely;

- Geotechnical Drilling of minimum 1 Bore (s) to 1.8 m or refusal (whichever first) with logging, sampling and in-situ testing as required
- Site Classification to AS2870-2011 Residential Slabs and Footings.

The above scope has been determined in consultation with the Client and is subject to time and budgetary considerations. Geotechnical investigations are informative processes and further works may be required depending upon the findings of the results of this investigation.

3. Site Investigation

Please refer to Appendices for the results of field/laboratory investigation (where relevant) including site photographs, bore logs, bearing capacity and other relevant data.

4. Interpretation

Geotechnical Parameter	Results
General Comments	FLAT SITE, ACESS RESTRICTED GIVEN VEGETATION COVER. LARGE TREES REQUIRING REMOVAL (SEE SITE PHOTOS). SITE DEVEGETATION WILL CAUSE FUTURE DISTURBED GROUNDSURFACE. TARGET DEPTH OF FOUNDATIONS MAY BE REVIEWED SUBJECT TO A POST DEMOLITION ASSESSMENT.
Site Geology (MRT Tas 1:250000)	Dgaas
Geotechnical Risks:	
Slope Instability	Not mapped hazard band (DPAC 2023) accessed via LISTMAP).
Soft/Collapsing Soil	Recommend maximum 100kPa working bearing pressures at a minimum 2000mm or refusal.
Groundsurface Movement	Slight-Moderate (variability anticipated over the site).
Erosion Potential	Soils may be sensitive to wind and water erosion. Risks to be controlled by a soil and water management plan.
Surface Water	Not observed
Shallow Groundwater/Perched Water	Not encountered- localised seasonal groundwater tables known to existed in localised landscape- upslope interceptor drain age around foundations required.
Uncontrolled Fill/Disturbed Soils	Uncontrolled fill will be caused through site de-vegetation FILL MUST NOT BE USED AS A FOUNDING SUBSTRATE. A POST DEMOLITION ASSESSMENT MAY REDUCE TARGET DEPTH OF FOUNDATIONS. Furthermore, ex-situ uncontrolled fill observed onsite (see site photos).
Impacting Vegetation (Onsite or on adjacent sites)	Trees onsite warranting design consideration
Proposed or recent removal of building/structures	Unknown
Proposed or recent removal of trees	Large trees to be removed as discussed above
Excavation Difficulties	Possible – near surface granite floaters and bedrock known to occur in localised landscape.
Bulk Earthworks (Completed/partially completed/not proposed)	None

5. Recommended Foundation Design Parameters

•	The following	foundation	design	parameters	are recommended	:t
---	---------------	------------	--------	------------	-----------------	----

	Reco	mmended Footing D	esigns
	Slab	Pad/Strip	Pier/Pile Footings
Founding material *1	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK
Recommended Minimum Founding Depth (mm or m)	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL
Max Allowable Bearing Pressure (kPa)	100	100	100
Indicative Soil Ys (mm)	20-40mm	20-40mm	20-40mm

^{*1}Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

It must be emphasised that in classifying the site, Strata Geoscience and Environmental P/L did not place sole reliance on the soil bore logs as a means of being an absolute representation of all subsurface features and conditions over the site. Any persons relying upon this document must not assume that subsurface conditions across the entire site will be identical to that represented in the bore logs.

Relevant information and guidance used in classifying the site includes several or all of the following:

1. Publications from Standards Australia, CSIRO, Foundation and Footings Society, Australian Geomechanics Society.

2. Well established and relevant knowledge of the behaviour of local soils and processes affecting soil behaviour (eg ephemeral springs, perched water tables, unstable slopes, collapsing soils, vegetation, etc).

3. The broad experience of the site classifier.

4. Specific investigations from nearby areas.

5. Past Performance of existing structures and foundations (where relevant and known)

6. Engineering Assessment of likely characteristic ground surface movement (ys) based upon estimated lpt values and/or laboratory derived lss values where relevant.

6. Construction Recommendations

6.1 Pre Construction

- Results of this investigation MUST be confirmed when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report.
- Design depth to refusal for bored pier/driven pile designs may show variability over the site and may need to be considered in any contractor quotation. Construction machinery will show different depths to refusal that what is indicated in this investigation.
- Test pitting/piling with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Screw piles should be driven to a minimum depth as nominated by the foundation designer to ensure lateral stability of each pile. Test piling at all corners of each building must occur to ensure this.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.
- Where rock is encountered the in relation to the Foundation Recommendations the following terms should be noted as per AS2870-2011 Residential Slabs and Footings
 - Rock Outcrops Where a footing or edge beam encounters a single local rock outcrop over a length less than 1 m, the depth of the footing or edge beam may be reduced by up to one-third, provided the amount of top and bottom reinforcement is doubled and extended 500 mm past the section with reduced depth. Alternatively, the footing may be stepped or raised, provided the structural stiffness is preserved as per AS2870-2011 Clause 3.1.6.
 - Partial Rock Outcrops Where part of the footing is on rock and part is on soil, provision for movement at the change between the two types of foundation shall be made by articulation of the superstructure or strengthening of the footing system. On Reactive Sites (M, H1 and H2) where part of the footing is on rock and part is on soil, the design shall be in accordance with engineering principles as per AS2870-2011 Clause 3.1.7.
 - Design for complete rock foundation Where the edge beam or footing is to be founded entirely on rock, the footing or beam may be replaced by a levelling pad of concrete or mortar as per AS2870-2011 Clause 3.1.8.

- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) MUST be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- Uncontrolled Fill Any FILLING that does not meet the requirements of AS2870- 2011 Clause 2.5.3(b). This clause allows up to 0.8m of uncontrolled SAND FILL and up to 0.4m of uncontrolled CLAY FILL without impacting on the above site classification following that all foundations are founded on the natural soils through the filling.
- **Rolled Fill** Consists of material compacted in layers by repeated rolling with an excavator or similar equipment. The depth of rolled fill shall not exceed 0.6m compacted in layers of not more than 0.3m thick for sand material or 0.3m compacted in layers of not more than 0.15m thick for other materials as per AS2870-2011 Clause 6.4.2(b).
- Controlled Fill Fill that will be required to support structures or associated pavements, or for which engineering properties are to be controlled – Refer to AS2870-2011 Clauses 2.5.3, 2.5.3(a), and 6.4.2(a) – i.e. where a specification has been provided on the type, quality, and compaction requirements for filling at a site and the earthworks have been deemed compliant or have complied with the requirements of the specification.
- The recommendations of CSIRO Building Technology File 18 be adopted.
- An apron of paving around the building perimeter sloping away from foundations with a minimum fall of 1:60 be considered for Class M, H-1, H-2, E and P sites.

6.2 During Construction

Throughout construction it is highly recommended that:

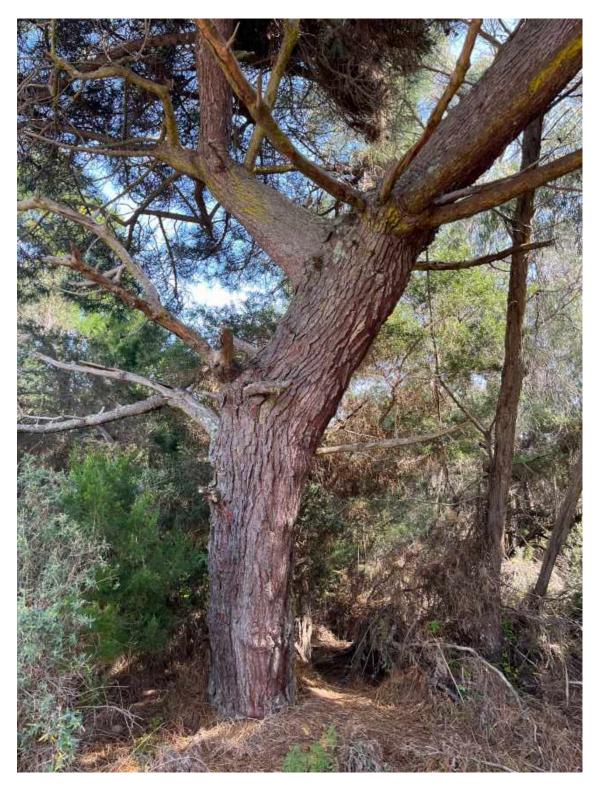
- Inspection of the natural soil surface after footings excavation but prior to construction is required by Strata Geoscience and Environmental in accordance with Appendix D of AS 2870-2011. Failure to comply with this recommendation will void all classifications and recommendations contained in this report. The site classification may be changed at this time depending upon the nature of the founding surface which is dependant in part on foundation design.
- Site cutting should be avoided if possible and if it occurs below 500mmbgs occurs then reclassification MUST be commissioned.
- Fill MUST NOT be used as a founding substrate.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Shrinkage cracking is almost inevitable in concrete slabs and is associated with the drying process. Therefore care must be taken

where brittle or sensitive floor coverings are proposed, or where a polished slab is planned. The risk of damage can be reduced by not installing floor coverings until after shrinkage has occurred, which can take in excess of 3 months, or by using flexible mortars and appropriate sheeting material.

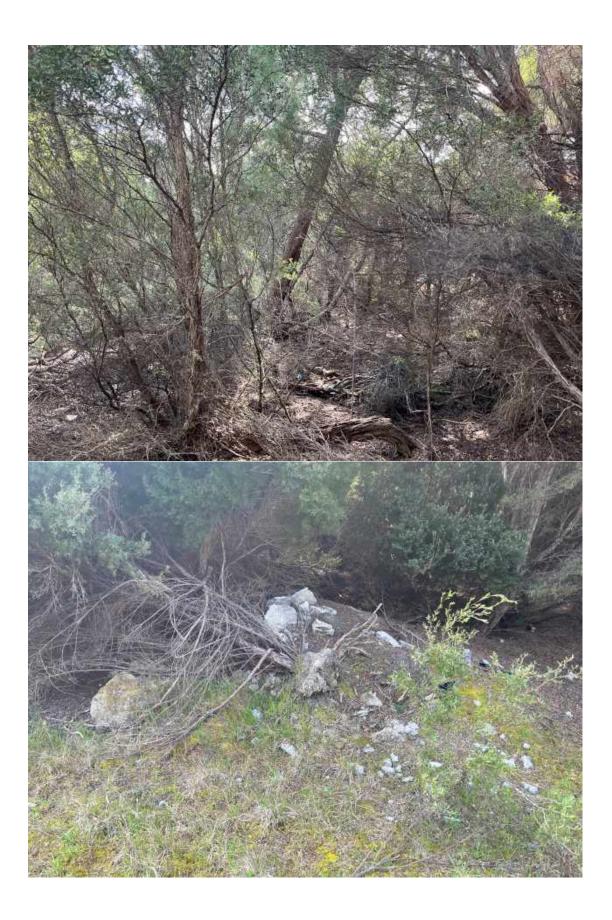
• Vertical barriers to prevent root incursions around founding zones should be considered in areas where gardens are to be established near foundations.

6.3 Post Construction

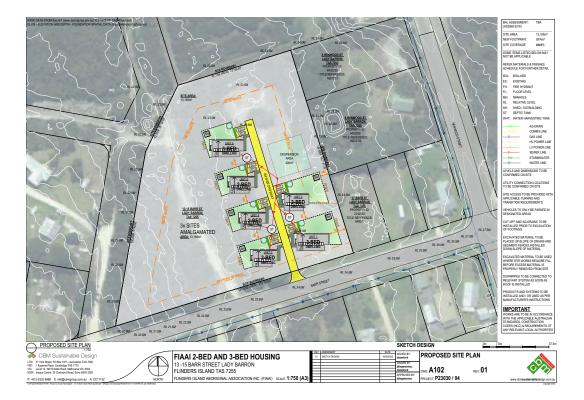
After construction, there are certain practices that the owner/occupier should be aware of to prevent excessive foundation movements. The owner will be responsible for any damage or loss associated with disregard for the recommendations contained in CSIRO Building Technology Files 18 "Foundation Maintenance and Footings Performances: A Homeowners Guide" available through CSIRO.


It is furthermore recommended that:

- Gardens or large shrubs or trees must not be established immediately adjacent to foundations
- Garden beds or lawn near foundations must not be excessively watered.
- Leaking underground services and downpipes or gutters must be fixed immediately.


S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

Appendix 1 Site Photos



1	-	strata Indicative Profile Log		BH01
Clie			Coords	
	ect:		1	122021
Dra 1 Onlin	ypa: a Mot		Bearing R.L SE	p: Dip: FWS
Fluid			Logged	by
	-	Deal Col Danie Minsterios Rose	Date:	
2		Soil 3 Rock Westhering Prac Specia	ng (n Sampi	ing and Insite Test
8	8	Meterial Description		
E.	- 12			
Depth (mm)	Graphic Log	Meteriel Description	1.rpe RUDE	Test Results and
<u> </u>	C	PPにPPにPコアエア単位工程のビエG DD ・ BROWNISH GREY SAND (SM) LOOSE, NP	111	Convents
		BROWNISH GREY SAND (SM) LOOSE, NP		
		TRENDING GREY SAND (SP) LOOSE, NP		
	-88			
000		TRENDING MEDIUM DENSE, LOWER BOUNDARY UNDEFINED	++++	
1000	-			
	100			
1600				
1996	- 33			
			++++	
2000	-8			
1000				
	1			
2500				
	8			
-				
3000				
	12			
	-			
10.0				
3500				
4000	-			
4500				
6000				
		BORE TERMINATED AT 1.8 M	пп	
9980		BORE TERMINATED AT 1.3 M	IIII	
-	-			
	11			

Appendix 2 Indicative Bore Logs

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geoleohnical Purposes: Refer to AS1726-1993 (Appendix A). The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

Major Divisions		Jor Divisions Partisin size mm Symbol		p Typical Names Laboratory Classification					
	BOULDERS				% < 0.075 mm (2)	Plasticity of fine fraction	$C_{s} - \frac{D_{th}}{D_{th}}$	$C = \frac{(D_{\infty})^2}{(D_{\infty})(D_{\infty})}$	NOTES
(uuu	COBBLES	200							
then 0.075		63	gw	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	-	x	Between 1 and 3	(1) Identify fines by the method give
is larger	GRAVELS	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	12-50	-		comply with ibove	for fine-grained sols.
61mm	haif of coarse	medium	GM	Silty gravels, gravel-sand-silt mixtures (1)	12-50	Below 'A' line or PI+4	_	2	
se Goornen Mess than 63 m	fraction is larger than 2.36 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	4 uanjū 12-50	Above 'A' line and Pi>7	-	-	(2) Bordenine
COAR then helf of material	SANDS	-	sw	Weil graded sands and gravely sands, little or no fines	0-5	-	>6	Between 1 and 3	classifications occur when the percentage of fines (fraction
	(more than half of coarse fraction is smaller than 2.36 mm)	0.6	SP	Poorly graded sands and gravely sands, little or no fines	0 Duppoore 12-50	-	Fails to comply with 0.075 m above is greate		smaller than 0.075 min size) is greater than 5% and less
		medium 0.2	SM	Billy sands, sand sit mixtures (1)	8 12-50	Below 'A' line or Pi<4		-	than 12%. Bordenine
\$		fne 0.075	sc	Clayey sands, sand-clay mixtures (1)	900500 H 12-50	Above 'A' line and PI>7	23		classifications require the use of SP-SM, GW- GC.
0075 mm			Inorganic sits, very fine sands, rock flour, sity or clayey fine sands or clayey sits with sight pissicity		Plasticity Chart For classification of fine grained soils and fine fraction of coarse grained soils.				ined soils
is smaller than	SILTS & CLA (Liquid Limit		CL CI	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, sity clays, lean clays	p 63 mm for a			n or coarse gr dun Hah	
			OL	Organic silts and clays of low plasticity	prime (1	10
lass then 63			мн	Inorganic sits, mic- aceous or diato-maceous fine sands or sits, elastic sits	Plastic Index (%)				THE MERINA
1	SILTS & CLA (Liquid Limit	8 S	inordanic clavs of hid		0			-	24
fol matter			он	Organic sits and clays of high plasticity	prodetion	Zou	-	40.	
more than half	HIGHLY ORGANIC		PT	Peat and other highly organic soils	Uee the ge		n a Liqu	uid Limit (%)	

Soil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary), Refer to AS 1725-1993, A2.4 and A3.3.

Soll Moleture Condition: Is based on the appearance and feel of soll. Refer to AS 1726-1993, A2.5.

Term	Description	
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.	
Moist	Soll feels cool, dankened in colour. Cohesive solls can be moulded. Granular solls tend to cohere.	
Wet	Soll feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.	

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s.) can be assessed using a simple field tool appropriate for cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table A4.

	Consistency -	Soil Parts	cie Sizec				
Төпт	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength 6, (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range
Very soft	Oozes between fingers when squeezed in hand.	٧s	D-2	<12	<3	BOULDERS	>200 mm 63-200 mm
Soft	Easily moulded with fingers.	s	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Film	Can be moulded by strong pressure of fingers.	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
SUT		81	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Not possible to mould with fingers.	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400		

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Solis: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table AS; BS5930-1999, p117.

Conclutency - Essentially Non-Cohecive Solis							
Term	Symbol	SPT N Value	Field Guide	Density Index (%)			
ery loose	VL.	04	Foot imprints readily	0-15			
xose	IL.	4-10	Shovels Easly	15-35			
edium dense	MD	10-30	Shoveling difficult	35-65			
ense	D	30-50	Pick required	65-85			
ery dense	VD	>50	Picking difficult	85-100			
	vo	1000					

Standard Penetration Test (SPT): Refer to: AS 1289.6.3.1-2004. Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment
4, 7, 11	N=18	Full penetration; N is reported on engineering borehole log
18, 27, 32	N=59	Full penetration; N is reported on engineering borehole log
4, 18, 30/15 mm	N is not reported	30 blows causes less than 100 mm penetration (3 st interval) - test discontinued
3G/80 mm	N is not reported	30 blows causes less than 100 mm penetration (1 ^{et} Interval) – test discontinued
TW .	N<1	Rod weight only causes full penetration
hw	N=1	Hammer and rod weight only causes full penetration
no	N is not reported	Hammer bouncing for 5 consecutive blows with no measurable penetration - test discontinued

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including:

- (s) Rock type (Table A5, (a) and (b))
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A3, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soil. Boundaries between weathering grades may be abrupt or gradational.

Rook Material Weathering Classification					
Weathering Grade	Symbol	Definition			
Residual Soli	RS	SolHike material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.			
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.			
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerais. The intact rock strength is generally much weaker than that of the fresh rock.			
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerals. The intact rock strength is usually noticeably weaker than that of the fresh rock.			
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.			
Fresh Rock	FR	Rock shows no sign of decomposition or staining.			
Notes:	ð				

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

2. Extremely weathered rock is described in terms of soil engineering properties.

3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.

The "Distinctly Weathered (DW)" class as defined in AS 1725-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rook Strength):

Strength of Rook Material

Tem	8 ymbol	Point Load Index (MPa)		Field Guide to Strength			
Extremely Low	EL	s0.03		Easity removided by hand to a material with soil properties.			
Very Low	VL.	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.			
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium	м	×0.3	\$1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.			
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock rings under hammer.			
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; nock rings under hammer.			

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Discontinuity	Decartption	Refer to AS	1725-1993.	Table A10.

Anisotropio Fabrio Roughness (e.g. Planar, Smooth is abbreviated PI / Sm) Class					895	Other			
BED	Bedding				Rough or Irregular (Ro)		1	CIY	Clay
FOL	Foliation	Stepped	(Stp)		Smooth (Sm) II			Fe	tron
LIN	Mineral lineation				Slickensided (SI) III			Co	Coal
Defect Type			Rough (Ro)		IV.	Carb	Carbonaceous		
P	Lamination Parting	Unduiating (Un)			Smooth (Sm)	0 V		Sint	Soli Infil Zone
BP	Bedding Parting				Slickensided (SI)	Slickensided (SI) VI		œ	Quartz.
FP	Cleavage / Foliation Parting				Rough (Ro)	bugh (Ro) VII		CA	Calcite
1, 15	Joint, Joints	Planar (Pl)			Smooth (Sm) VIII		VIII	Chi	Chiorite
sz	Sheared Zone		322		Slickensided (SI) (X		DX.	Fy	Pyrite
CZ	Crushed Zone	Apertur		Infilling				int	Intersecting
BZ	Broken Zone	Closed	CD	No visible	coating or infil	Clean	Cn	Inc	Incipient
HFZ	Highly Fractured Zone	Open	OP	Surfaces discoloured by mineral/s		Stain	St	DI	Drilling Induced
AZ	Alteration Zone	Filed	FL	Visible m	ineral or soll infili <1mm	Veneer	Vr	н	Horizontal
VN	Vein	Tight	Π.	Visible m	ineral or solt infil >1mm	Coating	Ct	V	Vertical

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spaoing: On the geolechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

Defect Spacing			Bedding Thic (Sedimentary Rook	승규가의 공격을 물러 가지 않는 것이 같이 했다.	Defect Spacing in 3D		
Spacing/Width (mm)	Descriptor	Symbol	Decortptor	Descriptor Spacing/Width (mm)		Description	
	· · · · · ·		Thinly Laminated	<6	Blocky	Equidimensional	
<20	Extremely Close	EC	Thickly Laminated	6-20	Tabular	Thickness much less than length or width	
20 - 60	Very Close	vc	Very Thinly Bedded	20 - 60	Columnar	Height much greater than cross section	
60 - 200	Close	c	Thinly Bedded	60-200		Str.	
200 ~ 600	Medium	м	Medium Bedded	200 - 600	Defect Persistence		
600 - 2000	Wide	w	Thickly Bedded	600 - 2000	(areal extent)		
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000			
>6000	Extremely Wide	EW	-	+ +	Trace length of defect given in metres		
	the second s						

Symbols

The itst below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Res	utis	1	Test Symbols
PI	Plasticity Index	¢	Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C.,	Undrained Cohesion	SPT	Standard Penetration Test
u	Liquidity index	¢ _s	Residual Cohesion	CPTu	Cone Penetrometer (Plezocorie) Test
00	Dry Density	ø	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0.	Undrained Angle of Internal Priction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	۴.	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	¢,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
OC	Organic Content	π,	Coefficient of Volume Compressibility	UCS	Unlastal Compressive Strength
WPI	Weighted Plasticity Index	S	Coefficient of Secondary Compression	Pm	Pressuremeter

	25	Test Symbols			
WLS	Weighted Linear Shrinkage		Voids Ratio	FSV	Field Shear Vane
DoS	Degree of Saturation	ď	Constant Volume Friction Angle	DGT	Direct Shear Test
APD	Apparent Particle Density	q,/q,	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate
$\mathbf{S}_{\mathbf{k}}$	Undrained Shear Strength	q,	PANDA Cone Resistance	٨	Point Load Test (axial)
q,	Unconfined Compressive Strength	400	Point Load Strength Index	D	Point Load Test (diametral)
R	Total Core Recovery	RQD	Rock Quality Designation	L	Point Load Test (Irregular lump)

Groundwater level on the date shown	Water Inflow	- Water Outflow	l
-------------------------------------	--------------	-----------------	---

Appendix 3 Site Classification and Plumbing Specifications

AS3870-2011 SOIL CLASSIFICATION	ON SITE SOIL CONDITIONS	DIFFERENTIAL MOVEMENT	SEWER & Stormwater GRADE	SWIVEL * (Sbeen Expansion)	SWIVEL/COMBO * (100mm Expansion	EXPANDA JOINTS	CREEP SLOPE SITES	DRAWING	
A	Most Sand & Rock sites	0 + 10mm						Na	
s	Slightly reactive Sols	10 - 20mm	1:60 Miremum	Not necessary	Not necessary	Not necessary		Nila	
м	Moderatively reactive poils	20 - 40mm					These	SP 100 8 SP 101	
н	Highly reactive solls	40 - 60mm	1:40 Minimum at No	As per AS3500.5		At Junctions within 1 mtr of internal building	termed P sites and are referred	SP 102	
H2	Very highly reactive soils	60 - 75mm		1:40 Minimum Expansion Joint at every riser Not applicable	using 2 units outside and an	using either or both Bend or	footprint and every 6 mtrs.	to in Drawing SP 105	5P 102A
E	Extremely reactive solls	75 + mm				Differential Movement		SP 102A	
Р	Solis affected by Abnormal moisture and conditions	Fran. 20 + mm		tiul	alab	See AS2032-2006 Clause 6.4.2.2-4 for suspension requirements		5P 105A	
E: Engineer or loc	al Authority detai	ls taks preceden	ce over this ch	vart	To be read	in conjunction with Sta	rm Plastice de	rawings show	
					GRADE RATIO	FALL IN 10 mtrs	ANGLE	GRADE %	
470 one			1		1:100	100 mm	.57	1.0	
	5 📐 🔄	The	5	2	1:80	125 mm	.71	1.25	
	A REAL	C.	3.) E	Gertievet Salasi I Donte Akt	1:60	167 mm	.95	1.65	
((C	0	SURVEL Street Generate Contrast	The F	- <u>-</u>	1:50	200 mm	1.14	2.0	
tota start		1.			1:40	250 mm	1.43	2.5	

CERTIFICATE	OF QUALIFIED PERSON – AS	SES	SABLE Section 321		
To:	CBM SUSTAINABLE DESIGN		Owner /Agent Address Suburb/postcode		
Qualified perso	on details:				
Qualified person:	SVEN NIELSEN				
Address:	17 LITTLE ARTHUR STREET		Phone No: 0413545358		
	NORTH HOBART		Fax No:		
Licence No: AO	address.	TACO	NSULTING.COM.AU		
Qualifications and Insurance details:	MEngSc CPSS PI INSURANCE PUBLIC LIABILITY CONTACT FOR DETAILS		ion from Column 3 of the of Building Control's nation)		
Speciality area of expertise:	INDICATIVE Site Classification to AS2870-2011/AS4055-2006		tion from Column 4 of the of Building Control's nation)		
Details of work	:				
Address:	UNIT 3 13-15 BARR STREET		Lot No:		
	LADY BARRON		Certificate of title No:		
The assessable item related to this certificate:	INDICATIVE Site Classification to AS2870- 2011/AS4055-2021		 (description of the assessable item being certified) Assessable item includes – a material; a design a form of construction a document testing of a component, building system or plumbing system an inspection, or assessment, performed 		
Certificate deta	ils:				
Certificate type:	Se	chedule 1	from Column 1 of of the Director of Building etermination)		
This certificate is ir	relation to the above assessable item, at any building work, plumbing work or pl Or	-			

a building, temporary structure or plumbing installation:

In issuing this certificate the following matters are relevant -

Documents:	SR05392
Delevent	
Relevant calculations:	SEE REPORT WHERE RELEVANT
calculations.	
References:	
	Substance of Certificate: (what it is that is being certified)
AS2870-2011 A	SSESSMENT
SEE RECOMMEN	Scope and/or Limitations NDATIONS AND WELL AS TERMS AND CONDITIONS CONTAINED WITHIN
	REPORT, ESPECIALLY NOTING:
	RING AND ARCHITECTUAL PLANS TO BE SUBMITTED TO STRATA FOR
	TION AGAINST REPORT RECOMMEDATIONS PRIOR TO
	JCTION. FAILURE TO ENSURE THIS WILL VOID ALL CLASSIFICATIONS OMMENDATIONS CONTAINED IN THE REPORT
-	G SURFACE INSPECTION OF ALL EXCAVATIONS PRIOR TO
FOUNDA	TION CONSTRUCTION BY STRATA IS MANDATORY AND FAILING TO
	SION THIS WILL VOID ALL CLASSIFICATIONS AND RECOMMENDATIONS
	ED IN THE REPORT. THIS IS TO ENSURE THAT ALL FOUNDATIONS ARE
	D RECOMMENDED FOUNDING SUBSTRATE AND NOT SOFT TOPSOILS INTROLLED FILL (WHERE PRESENT)
	UTTING BEYOND 500MM OCCURS THEN THE SITE MUST BE
	SIFIED IN CONSULTATION WITH STRATA.
	LID FOR 2 YEARS FROM THE DATE BELOW.
I certify the matters	s described in this certificate.

	Signe	d:	Certificate No:	Date:
Qualified person:	S NIELSEN	<u>J</u> J	SR05392	27/9/23
		V		

Appendix 5 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client, the Client must inform Strata in writing of that information as soon as possible. Further advice will be provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Strata is not information supplied to Strata has been provided at the Client's cost. Any report is prepared on the assumption that the instructions and information supplied by the accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata and information supplied to Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been su

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011. Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase. The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a change in the site classification are to be incurred by the client. Furthermore any costs associated with a lounding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classification is AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and

accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability where any report is relied upon after three months from the date of the report, (unless otherwise provided in the report or required by the Australian Standard which the report purports to comply with), or the date when the Client advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. Soil depths and composition can vary due to natural and anthopogenic processes. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Furthermore where rocky profiles are encountered no comment is made about the potential size of liberated rocks from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- (ii) the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered in any way from the original provide by Strata.

Site Classification to AS2870-2011 - Residential Slabs and Footings

1. Introduction

Strata Geoscience and Environmental Pty Ltd was commissioned to provide a Site Classification to AS2870-2011 for:

Site Details and Key Investigation Outcomes					
Site Address	Unit 4 13-15 Barr Street Lady Barron				
Property Owner/Client	CBM Sustainable Design				
Development	New dwelling				
Date of Investigation	13/9/21				
Key Geotechnical Limitations to Site Development	Uncontrolled fill (from future site clearing), reactive soil phases, potential for abnormal soil moisture gradients, potential for colluvial and bedrock outcroppings				
Key Recommendations	Site drainage around deepened foundations recommended				
Site Classification to AS2870-2011	Class P – ALERT TO TREES WITHIN ZONE OF INFLUENCE OF FUTURE FOUNDATIONS AND UNCONTROLLED FILL/DISTURBED PROFILES				
Subsidiary Site Classification to AS2870-	Class M				
2011 (TO BE USED FOR PLUMBING					
DESIGN SEE APPENDIX 3)					
Site Classification to AS4055- 2012	N2				

2. Scope

It is the scope of this investigation to consider geotechnical factors affecting the current development plan (if available). Namely;

- Geotechnical Drilling of minimum 1 Bore (s) to 1.8 m or refusal (whichever first) with logging, sampling and in-situ testing as required
- Site Classification to AS2870-2011 Residential Slabs and Footings.

The above scope has been determined in consultation with the Client and is subject to time and budgetary considerations. Geotechnical investigations are informative processes and further works may be required depending upon the findings of the results of this investigation.

3. Site Investigation

Please refer to Appendices for the results of field/laboratory investigation (where relevant) including site photographs, bore logs, bearing capacity and other relevant data.

4. Interpretation

Geotechnical Parameter	Results			
General Comments	FLAT SITE, ACESS RESTRICTED GIVEN VEGETATION COVER. LARGE TREES REQUIRING REMOVAL (SEE SITE PHOTOS). SITE DEVEGETATION WILL CAUSE FUTURE DISTURBED GROUNDSURFACE. TARGET DEPTH OF FOUNDATIONS MAY BE REVIEWED SUBJECT TO A POST DEMOLITION ASSESSMENT.			
Site Geology (MRT Tas 1:250000)	Dgaas			
Geotechnical Risks:				
Slope Instability	Not mapped hazard band (DPAC 2023) accessed via LISTMAP).			
Soft/Collapsing Soil	Recommend maximum 100kPa working bearing pressures at a minimum 2000mm or refusal.			
Groundsurface Movement	Slight-Moderate (variability anticipated over the site).			
Erosion Potential	Soils may be sensitive to wind and water erosion. Risks to be controlled by a soil and water management plan.			
Surface Water	Not observed			
Shallow Groundwater/Perched Water	Not encountered- localised seasonal groundwater tables known to existed in localised landscape- upslope interceptor drain age around foundations required.			
Uncontrolled Fill/Disturbed Soils	Uncontrolled fill will be caused through site de-vegetation FILL MUST NOT BE USED AS A FOUNDING SUBSTRATE. A POST DEMOLITION ASSESSMENT MAY REDUCE TARGET DEPTH OF FOUNDATIONS. Furthermore, ex-situ uncontrolled fill observed onsite (see site photos).			
Impacting Vegetation (Onsite or on adjacent sites)	Trees onsite warranting design consideration			
Proposed or recent removal of building/structures	Unknown			
Proposed or recent removal of trees	Large trees to be removed as discussed above			
Excavation Difficulties	Possible – near surface granite floaters and bedrock known to occur in localised landscape.			
Bulk Earthworks (Completed/partially completed/not proposed)	None			

5. Recommended Foundation Design Parameters

٠	The following	foundation	design	parameters	are recommended:
---	---------------	------------	--------	------------	------------------

	Recommended Footing Designs					
	Slab	Pad/Strip	Pier/Pile Footings			
Founding material *1	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK			
RecommendedPIER/PILEMinimumFoundingSUPPOPRTED NDepth (mm or m)2000MM ORREFUSAL		PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL			
Max Allowable Bearing 100 Pressure (kPa)		100	100			
Indicative Soil Ys (mm)	ndicative Soil Ys (mm) 20-40mm		20-40mm			

^{*1}Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

It must be emphasised that in classifying the site, Strata Geoscience and Environmental P/L did not place sole reliance on the soil bore logs as a means of being an absolute representation of all subsurface features and conditions over the site. Any persons relying upon this document must not assume that subsurface conditions across the entire site will be identical to that represented in the bore logs.

Relevant information and guidance used in classifying the site includes several or all of the following:

1. Publications from Standards Australia, CSIRO, Foundation and Footings Society, Australian Geomechanics Society.

2. Well established and relevant knowledge of the behaviour of local soils and processes affecting soil behaviour (eg ephemeral springs, perched water tables, unstable slopes, collapsing soils, vegetation, etc).

3. The broad experience of the site classifier.

4. Specific investigations from nearby areas.

5. Past Performance of existing structures and foundations (where relevant and known)

6. Engineering Assessment of likely characteristic ground surface movement (ys) based upon estimated lpt values and/or laboratory derived lss values where relevant.

6. Construction Recommendations

6.1 Pre Construction

- Results of this investigation MUST be confirmed when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report.
- Design depth to refusal for bored pier/driven pile designs may show variability over the site and may need to be considered in any contractor quotation. Construction machinery will show different depths to refusal that what is indicated in this investigation.
- Test pitting/piling with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Screw piles should be driven to a minimum depth as nominated by the foundation designer to ensure lateral stability of each pile. Test piling at all corners of each building must occur to ensure this.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.
- Where rock is encountered the in relation to the Foundation Recommendations the following terms should be noted as per AS2870-2011 Residential Slabs and Footings
 - Rock Outcrops Where a footing or edge beam encounters a single local rock outcrop over a length less than 1 m, the depth of the footing or edge beam may be reduced by up to one-third, provided the amount of top and bottom reinforcement is doubled and extended 500 mm past the section with reduced depth. Alternatively, the footing may be stepped or raised, provided the structural stiffness is preserved as per AS2870-2011 Clause 3.1.6.
 - Partial Rock Outcrops Where part of the footing is on rock and part is on soil, provision for movement at the change between the two types of foundation shall be made by articulation of the superstructure or strengthening of the footing system. On Reactive Sites (M, H1 and H2) where part of the footing is on rock and part is on soil, the design shall be in accordance with engineering principles as per AS2870-2011 Clause 3.1.7.
 - Design for complete rock foundation Where the edge beam or footing is to be founded entirely on rock, the footing or beam may be replaced by a levelling pad of concrete or mortar as per AS2870-2011 Clause 3.1.8.

- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) MUST be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- Uncontrolled Fill Any FILLING that does not meet the requirements of AS2870- 2011 Clause 2.5.3(b). This clause allows up to 0.8m of uncontrolled SAND FILL and up to 0.4m of uncontrolled CLAY FILL without impacting on the above site classification following that all foundations are founded on the natural soils through the filling.
- **Rolled Fill** Consists of material compacted in layers by repeated rolling with an excavator or similar equipment. The depth of rolled fill shall not exceed 0.6m compacted in layers of not more than 0.3m thick for sand material or 0.3m compacted in layers of not more than 0.15m thick for other materials as per AS2870-2011 Clause 6.4.2(b).
- Controlled Fill Fill that will be required to support structures or associated pavements, or for which engineering properties are to be controlled – Refer to AS2870-2011 Clauses 2.5.3, 2.5.3(a), and 6.4.2(a) – i.e. where a specification has been provided on the type, quality, and compaction requirements for filling at a site and the earthworks have been deemed compliant or have complied with the requirements of the specification.
- The recommendations of CSIRO Building Technology File 18 be adopted.
- An apron of paving around the building perimeter sloping away from foundations with a minimum fall of 1:60 be considered for Class M, H-1, H-2, E and P sites.

6.2 During Construction

Throughout construction it is highly recommended that:

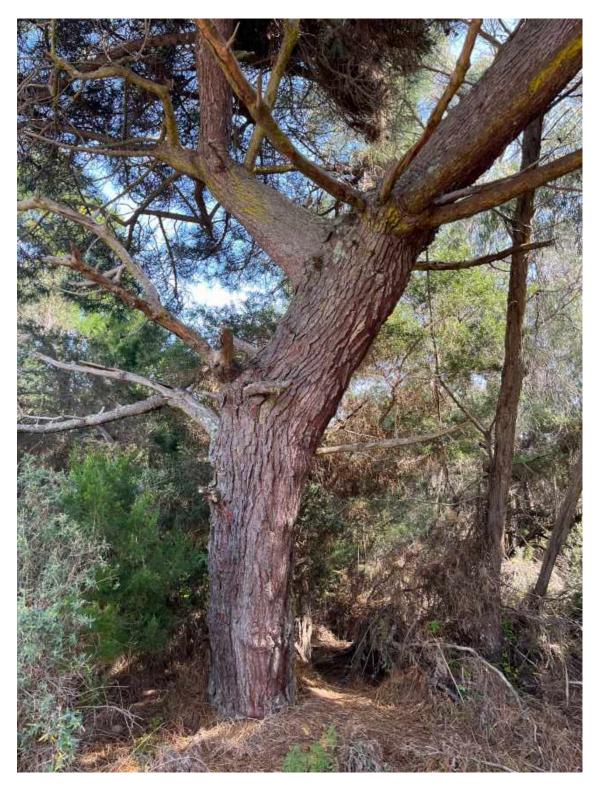
- Inspection of the natural soil surface after footings excavation but prior to construction is required by Strata Geoscience and Environmental in accordance with Appendix D of AS 2870-2011. Failure to comply with this recommendation will void all classifications and recommendations contained in this report. The site classification may be changed at this time depending upon the nature of the founding surface which is dependant in part on foundation design.
- Site cutting should be avoided if possible and if it occurs below 500mmbgs occurs then reclassification MUST be commissioned.
- Fill MUST NOT be used as a founding substrate.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Shrinkage cracking is almost inevitable in concrete slabs and is associated with the drying process. Therefore care must be taken

where brittle or sensitive floor coverings are proposed, or where a polished slab is planned. The risk of damage can be reduced by not installing floor coverings until after shrinkage has occurred, which can take in excess of 3 months, or by using flexible mortars and appropriate sheeting material.

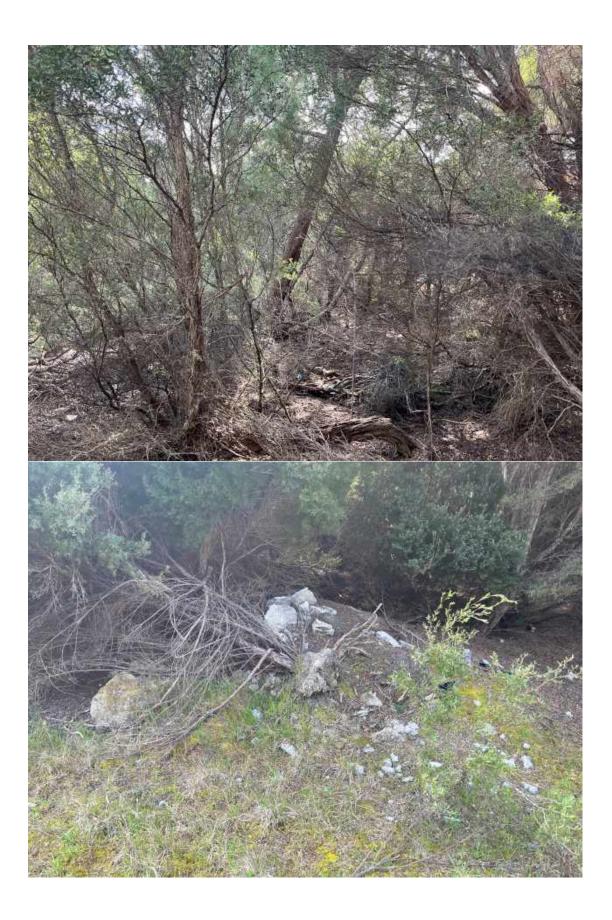
• Vertical barriers to prevent root incursions around founding zones should be considered in areas where gardens are to be established near foundations.

6.3 Post Construction

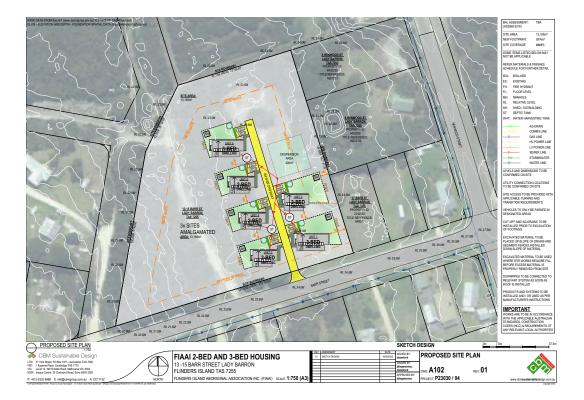
After construction, there are certain practices that the owner/occupier should be aware of to prevent excessive foundation movements. The owner will be responsible for any damage or loss associated with disregard for the recommendations contained in CSIRO Building Technology Files 18 "Foundation Maintenance and Footings Performances: A Homeowners Guide" available through CSIRO.


It is furthermore recommended that:

- Gardens or large shrubs or trees must not be established immediately adjacent to foundations
- Garden beds or lawn near foundations must not be excessively watered.
- Leaking underground services and downpipes or gutters must be fixed immediately.


S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

Appendix 1 Site Photos



	strata	Indicative Profile Lo	9 внот
Client			Coords
Project:	8		
Dra Type:			Bearing: Dip:
Drilling Mot Fluid			R.L. SEE WS Logged by
	L DI DI		Date:
		Soil :: Rock Weethering Prac.	Specing (r Sampling and Insitu Test
2 8	Meterial Description	900 B	
and the			
Depth (mm) Graphic Log		Structure and the second secon	Test Results and
	BROWNISH GREY SAND		Sic Grants Comments
	BROWNIGH GRET GARE	, ISMI LOOSE, IN	
	TRENDING GREY SAND	(SP) LOOSE NP	
- 200			
	TRENDING MEDIUM DEN	SE	
1000			
	TRENDING CLAYEY SAN	D (SC), GRAVEL INCLUSIONS	
1600			
2000			
2046			
2500			
1.1			
3000			
H			
3500	VI VI VI VI VI		
4000			
4500			
I H			
5000			
H			
H		BORE TERMINATED AT 1.8 M	
9500		BORE TERMINATED AT 1.8 M	TITUTET
H			

Appendix 2 Indicative Bore Logs

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geoleohnical Purposes: Refer to AS1726-1993 (Appendix A). The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

Major Divisions		Islons Particle Group State mm Symbol		Typical Names	al Names Laboratory Classification						
	BOULDERS				% < 0.075 mm (2)	Plasticity of fine fraction	$C_4 - \frac{D_{61}}{D_{10}}$	$C = \frac{(D_{m})^{2}}{(D_{m})(D_{m})}$	NOTES		
(imp	COBBLES	200									
then 0.075		63	GW	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	-	×	Between 1 and 3	(1) Identify fines by the method giver		
m is larger 0	GRAVELS (more than	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	0-5 12-50	-		comply with bove	for fine-grained solis.		
61mm	half of coarse	medium	GM	Silty gravels, gravel-sand-silt mixtures (1)	12-50	Below 'A' line or Pi-4	_	- 24			
SE GRANED Mos than 63 m	fraction is larger than 2.36 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	4 12-50 12-50	Above 'A' line and Pi>7	-	-	(2) Bordenine		
COARSE than helf of material less	half of		sw	Weil graded sands and gravely sands, little or no fines	D-5	-	>6	Between 1 and 3	classifications occur when the percentage of fines (fraction		
		0.6	SP	Poorly graded sands and gravely sands, little or no fines	0 04po 0-5	-		comply with bove	smaller than 0.075 mm size) is greater than 5% and less		
di socu	fraction is smaller than 2.36 mm)	medium 0.2	SM	Bility sands, sand silt mixtures (1)	8 12-50	Below 'A' line or Pi<4		-	than 12%. Bordenine		
*		tne 0.075		Clayey sands, sand-clay mixtures (1)	12-50	Above 'A' line and PI>7		-	classifications require the use of SP-SM, GW- GC.		
0075 mm			ML	Inorganic sits, very fine sands, rock flour, sity or clayey fine sands or clayey sits with sight plasticity	deedfcation		classificat	ticity Char on of fine gra	ined soils		
-S. Is smaller than	SILTS & CLA (Liquid Limit	0.000	а а	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, sity clays, lean clays	10 mm	8 "					
			OL	Organic slits and clays of low plasticity	preserve in			1	1 AN		
CRAINED W		2	мн	Inorganic sits, mic- aceous or diato-maceous fine sands or sits, elastic sits	Plastic Index (%)			1	Nor Maria		
Table 14	SILTS & CLA (Liquid Limit	11 S	сн	Inorganic clays of high plasticity, fat clays	0.	and the second	1	-	ni i		
			он	Organic sits and clays of high plasticity	prodetion	Za		6a.			
more than hal			PT	Peat and other highly organic soils	Use the gr		n a Liqu	id Limit (%)			

Soil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary), Refer to AS 1725-1993, A2.4 and A3.3.

Soll Moleture Condition: Is based on the appearance and feel of soll. Refer to AS 1726-1993, A2.5.

Term	Description	
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.	
Moist	Soli feels cool, dankened in colour. Cohesive solis can be moulded. Granular solis tend to cohere.	
Wet	Soll feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.	

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s.) can be assessed using a simple field tool appropriate for cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table A4.

	Consistency -	Eccentrally	Cohesive	e Sollis		Soll Parti	ole Sizec
Төпт	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength G, (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range
Very soft	Oozes between fingers when squeezed in hand.	VS	D-2	<12	<3	BOULDERS	>200 mm 63-200 mm
Soft	Easily moulded with fingers.	s	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Film	Can be moulded by strong pressure of fingers.	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
SUT		81	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Not possible to mould with fingers.	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400		

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Solis: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table AS; BS5930-1999, p117.

Consistency - Essentially Non-Cohesive Solis							
Term	Symbol	SPT N Value	Field Guide	Density Index (%)			
Very loose	VL.	04	Foot imprints readily	0-15			
Loose	L	4-10	Shovels Easly	15-35			
Medium dense	MD	10-30	Shoveling difficult	35-65			
Dense	D	30-50	Pick required	65-85			
Very dense	vo	>50	Picking difficult	85-100			

Standard Penetration Test (SPT): Refer to: AS 1289.6.3.1-2004. Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment				
4, 7, 11	N=18	Full penetration; N is reported on engineering borehole log				
18, 27, 32 N=59		Full penetration; N is reported on engineering borehole log				
4, 18, 30/15 mm	N is not reported	30 blows causes less than 100 mm penetration (3 st interval) - test discontinued				
30/80 mm N is not reported		30 blows causes less than 100 mm penetration (1 ⁴ Interval) - test discontinued				
TW .	N<1	Rod weight only causes full penetration				
hw	N=1	Hammer and rod weight only causes full penetration				
hb N is not reported		Hammer bouncing for 5 consecutive blows with no measurable penetration - test discontinued				

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including:

- (s) Rock type (Table A5, (a) and (b))
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A3, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to sol. Boundaries between weathering grades may be abrupt or gradational.

		Rook Material Weathering Classification
Weathering Grade	Symbol	Definition
Residual Soli	RS	Soli-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerals. The intact rock strength is generally much weaker than that of the fresh rock.
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerais. The intact rock strength is usually noticeably weaker than that of the fresh rock.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.
Notes:	ð	W

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

- 2. Extremely weathered rock is described in terms of soil engineering properties.
- 3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.
- The "Distinctly Weathered (DW)" class as defined in AS 1726-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rook Strength):

I

Strength of Rook Material

Term	Symbol	Point Load Index (MPa)		Field Guide to Strength				
Extremely Low	EL	s0.03		Easity removided by hand to a material with soil properties.				
Very Low	VL.	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.				
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dual sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.				
Medium	м	×0.3	\$1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.				
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock rings under hammer.				
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.				
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; nock rings under hammer.				

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weater due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Discontinuity	Decartption	Refer to AS	1725-1993.	Table A10.

Anieo	tropio Fabrio	Roughn	OGE (S	.g. Planar,	Smooth is abbreviated PI	(Sm) Ca	895	Other	
BED	Bedding				Rough or Irregular (Ro)		1	CIY	Clay
FOL	Foliation	Stepped	(Stp)		Smooth (Sm)		11	Fe	tron
LIN	Mineral lineation				Slickensided (58) III			Co	Coal
	Defect Type				Rough (Ro)		IV.	Carb	Carbonaceous
P	Lamination Parting	Undulating (Un)			Smooth (Sm)	m) V		Sint	Soli Infil Zone
BP	Bedding Parting				Silckensided (SI) VI		VE	œ	Quartz.
FP	Cleavage / Foliation Parting				Rough (Ro) VII			CA	Calcite
1, 15	Joint, Joints	Planar (F	PQ		Smooth (Sm) VIII		VIII	Chi	Chiorite
sz	Sheared Zone				Slickensided (SI)		DX.	Fy	Pyrite
CZ	Crushed Zone	Apertur		Infilling				int	Intersecting
BZ	Broken Zone	Closed	CD	No visible	coating or infil	Clean	Cn	Inc	Incipient
HFZ	Highly Fractured Zone	Open	OP	Surfaces discoloured by mineral/s		Stain	St	DI	Drilling Induced
AZ	Alteration Zone	Filed	FL	Visible mineral or soil Infill <1mm		Veneer	Vr	н	Horizontal
VN	Vein	Tight	Π.	Visible m	ineral or solt infil >1mm	Coating	Ct	V	Vertical

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spaoing: On the geolechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

Deleot Spaoing			Bedding Thic (Sedimentary Rook	승규가의 공격을 물러 가지 않는 것이 같이 했다.	Defect Spacing in 3D		
Spacing/Width (mm)	Decoriptor		Decortptor	Spaoing/Width (mm)	Term Decortption		
	· · · · · ·		Thinly Laminated	<6	Blocky	Equidimensional	
<20	Extremely Close	EC	Thickly Laminated	6-20	Tabular	Thickness much less than length or width	
20 - 60	Very Close	vc	Very Thinly Bedded	20 - 60	Columnar	Height much greater than cross section	
60 - 200	Close	c	Thinly Bedded	60-200		Str.	
200 ~ 600	Medium	м	Medium Bedded	200 - 600	Defect Persistence (areal extent)		
600 - 2000	Wide	w	Thickly Bedded	600 - 2000			
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000	100		
>6000	Extremely Wide	EW	-	+ +	Trace lengt	h of defect given in metres	
	the second s						

Symbols

The itst below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Res	utis	1	Test Symbols
PI	Plasticity Index	¢	Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C.,	Undrained Cohesion	SPT	Standard Penetration Test
u	Liquidity index	¢ _s	Residual Cohesion	CPTu	Cone Penetrometer (Plezocorie) Test
00	Dry Density	ø	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0.	Undrained Angle of Internal Priction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	۴.	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	¢,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
OC	Organic Content	π,	Coefficient of Volume Compressibility	UCS	Uniaxial Compressive Strength
WPI	Weighted Plasticity Index	S-4	Coefficient of Secondary Compression	Pm	Pressuremeter

	25	Test Resu	its.	Test Symbols		
WLS	Weighted Linear Shrinkage		Voids Ratio	FSV	Field Shear Vane	
DoS	Degree of Saturation	ď	Constant Volume Friction Angle	DGT	Direct Shear Test	
APD	Apparent Particle Density	q,/q,	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate	
$\mathbf{S}_{\mathbf{k}}$	Undrained Shear Strength	q,	PANDA Cone Resistance	٨	Point Load Test (axial)	
q,	Unconfined Compressive Strength	400	Point Load Strength Index	D	Point Load Test (diametral)	
R	Total Core Recovery	RQD	Rock Quality Designation	L	Point Load Test (Irregular lump)	

Groundwater level on the date shown	Water Inflow	- Water Outflow	l
-------------------------------------	--------------	-----------------	---

Appendix 3 Site Classification and Plumbing Specifications

AS3870-2011 SOIL CLASSIFICATION	ON SITE SOIL CONDITIONS	DIFFERENTIAL	SEWER & Stormwater GRADE	SWIVEL* (Sbeen Expansion)	SWIVEL/COMBO * (100mm Expansion)	EXPANDA JOINTS *	CREEP SLOPE SITES	DRAWING		
A	Most Sand & Rock sites	0 + 10mm						Na		
s	Slightly mactive Solts	10 - 20mm	1:60 Mixemum		Not necessary	Not necessary	Not necessary	Not necessary		N/a
м	Moderatively reactive soils	20 - 40mm					These	SP 100 8 SP 101		
н	Highly reactive solls	40 - 60mm		As per AS3500.5		At Junctions within 1 mtr of	within 1 mtr of	At Junctions all within 1 mtr of internal building	termed P sites and are referred	SP 102
H2	Very highly reactive soils	60 - 75mm	1:40 Minimum	using 2 units outside and an Expansion Joint	As necessary using either or both Bend or Straight units	footprint and every 6 mtrs.	to in Drawing SP 105	5P 102A		
E	Extremely reactive solts	75 + mm			at every riser Not applicable	able	Differential Movement			SP 102A
Р	Solis affected by Abnormal moisture and conditions	Fran. 20 + mm	As per Offerential Novement	to suspended sub-floors	suspended from alab	See AS2032-2006 Clause 6.4.2.2-4 for suspension requirements		5P 105A		
E: Engineer or loca	al Authority detai	is take preceden	ce over this ch	wrt	To be read	in conjunction with Sta	rm Plastics de	awings sho		
					GRADE RATIO	FALL IN 10 mtrs	ANGLE	GRADE %		
470 onn		-1.1	1	-	1:100	100 mm	.57	1.0		
110 000	5 N - 4	T	2	2	1:80	125 mm	.71	1.25		
	1 23000	CO	* 1	Gentleut Salati / Epinte Akt	1:60	167 mm	.95	1.65		
((0	SWIVEL Science Generation: Conservation	~ E		1:50	200 mm	1.14	2.0		
			2.0		201408	5.585.547 S.555 C	VII.45	2.5		

CERTIFICATE	OF QUALIFIED PERSON – AS	SSES	SABLE Section 321		
To:	CBM SUSTAINABLE DESIGN		Owner /AgentFormAddressFormSuburb/postcode		
Qualified perso	on details:				
Qualified person:	SVEN NIELSEN				
Address:	17 LITTLE ARTHUR STREET		Phone No: 0413545358		
	NORTH HOBART		Fax No:		
Licence No: AO	address:	TACC	NSULTING.COM.AU		
Qualifications and Insurance details:	MEngSc CPSS PI INSURANCE PUBLIC LIABILITY CONTACT FOR DETAILS		otion from Column 3 of the r of Building Control's ination)		
Speciality area of expertise:	INDICATIVE Site Classification to AS2870-2011/AS4055-2006	Directo	otion from Column 4 of the r of Building Control's ination)		
Details of work	:				
Address:	UNIT 4 13-15 BARR STREET		Lot No:		
	LADY BARRON		Certificate of title No:		
The assessable item related to this certificate:	INDICATIVE Site Classification to AS2870- 2011/AS4055-2021		 (description of the assessable item being certified) Assessable item includes – a material; a design a form of construction a document testing of a component, building system or plumbing system an inspection, or assessment, performed 		
Certificate deta	ills:				
Certificate type:	S	chedule	n from Column 1 of 1 of the Director of Building Determination)		
This certificate is ir	n relation to the above assessable item, at any building work, plumbing work or pl Or				

a building, temporary structure or plumbing installation:

In issuing this certificate the following matters are relevant -

Documents:	
Documents.	SR05393
Relevant	SEE REPORT WHERE RELEVANT
calculations:	SEE REFORT WHERE RELEVANT
calculations.	
References:	
_	Substance of Certificate: (what it is that is being certified)
AS2870-2011 A	SSESSMENT
	Scope and/or Limitations
	NDATIONS AND WELL AS TERMS AND CONDITIONS CONTAINED WITHIN
THE RELEVANT	REPORT, ESPECIALLY NOTING:
	RING AND ARCHITECTUAL PLANS TO BE SUBMITTED TO STRATA FOR TION AGAINST REPORT RECOMMEDATIONS PRIOR TO
	JCTION AGAINST REPORT RECOMMEDIATIONS PRIOR TO JCTION. FAILURE TO ENSURE THIS WILL VOID ALL CLASSIFICATIONS
	OMMENDATIONS CONTAINED IN THE REPORT
-	G SURFACE INSPECTION OF ALL EXCAVATIONS PRIOR TO
	TION CONSTRUCTION BY STRATA IS MANDATORY AND FAILING TO
	SION THIS WILL VOID ALL CLASSIFICATIONS AND RECOMMENDATIONS
	ED IN THE REPORT. THIS IS TO ENSURE THAT ALL FOUNDATIONS ARE
	D RECOMMENDED FOUNDING SUBSTRATE AND NOT SOFT TOPSOILS
	INTROLLED FILL (WHERE PRESENT)
	UTTING BEYOND 500MM OCCURS THEN THE SITE MUST BE
	SIFIED IN CONSULTATION WITH STRATA.
	LID FOR 2 YEARS FROM THE DATE BELOW.
I certify the matters	s described in this certificate.

	Signed:			Certificate No:		Date:
Qualified person:	S NIELSEN	Ad	S	SR05393		27/9/23
					L	

Appendix 5 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client, the Client must inform Strata in writing of that information as soon as possible. Further advice will be provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Strata is not information supplied to Strata has been provided at the Client's cost. Any report is prepared on the assumption that the instructions and information supplied by a client or all additional information clients are available to the client, the client must inform strata in writing of the services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not lia

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011, Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase. The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a founding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classifications contained within this report are void. Classification is based upon a range of expected ground surface movement as indicated in AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and

accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability where any report is relied upon after three months from the date of the report, (unless otherwise provided in the report or required by the Australian Standard which the report purports to comply with), or the date when the Client advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. Soil depths and composition can vary due to natural and anthopogenic processes. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Furthermore where rocky profiles are encountered no comment is made about the potential size of liberated rocks from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- (ii) the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered in any way from the original provide by Strata.

Site Classification to AS2870-2011 - Residential Slabs and Footings

1. Introduction

Strata Geoscience and Environmental Pty Ltd was commissioned to provide a Site Classification to AS2870-2011 for:

Site Details and Ke	y Investigation Outcomes
Site Address	Unit 5 13-15 Barr Street Lady Barron
Property Owner/Client	CBM Sustainable Design
Development	New dwelling
Date of Investigation	13/9/21
Key Geotechnical Limitations to Site Development	Uncontrolled fill (from future site clearing), reactive soil phases, potential for abnormal soil moisture gradients, potential for colluvial and bedrock outcroppings
Key Recommendations	Site drainage around deepened foundations recommended
Site Classification to AS2870-2011	Class P – ALERT TO TREES WITHIN ZONE OF INFLUENCE OF FUTURE FOUNDATIONS AND UNCONTROLLED FILL/DISTURBED PROFILES
Subsidiary Site Classification to AS2870- 2011 (TO BE USED FOR PLUMBING DESIGN SEE APPENDIX 3)	Class M
Site Classification to AS4055- 2012	N2

2. Scope

It is the scope of this investigation to consider geotechnical factors affecting the current development plan (if available). Namely;

- Geotechnical Drilling of minimum 1 Bore (s) to 1.8 m or refusal (whichever first) with logging, sampling and in-situ testing as required
- Site Classification to AS2870-2011 Residential Slabs and Footings.

The above scope has been determined in consultation with the Client and is subject to time and budgetary considerations. Geotechnical investigations are informative processes and further works may be required depending upon the findings of the results of this investigation.

3. Site Investigation

Please refer to Appendices for the results of field/laboratory investigation (where relevant) including site photographs, bore logs, bearing capacity and other relevant data.

4. Interpretation

Geotechnical Parameter	Results
General Comments	FLAT SITE, ACESS RESTRICTED GIVEN VEGETATION COVER. LARGE TREES REQUIRING REMOVAL (SEE SITE PHOTOS). SITE DEVEGETATION WILL CAUSE FUTURE DISTURBED GROUNDSURFACE. TARGET DEPTH OF FOUNDATIONS MAY BE REVIEWED SUBJECT TO A POST DEMOLITION ASSESSMENT.
Site Geology (MRT Tas 1:250000)	Dgaas
Geotechnical Risks:	
Slope Instability	Not mapped hazard band (DPAC 2023) accessed via LISTMAP).
Soft/Collapsing Soil	Recommend maximum 100kPa working bearing pressures at a minimum 2000mm or refusal.
Groundsurface Movement	Slight-Moderate (variability anticipated over the site).
Erosion Potential	Soils may be sensitive to wind and water erosion. Risks to be controlled by a soil and water management plan.
Surface Water	Not observed
Shallow Groundwater/Perched Water	Not encountered- localised seasonal groundwater tables known to existed in localised landscape- upslope interceptor drain age around foundations required.
Uncontrolled Fill/Disturbed Soils	Uncontrolled fill will be caused through site de-vegetation FILL MUST NOT BE USED AS A FOUNDING SUBSTRATE. A POST DEMOLITION ASSESSMENT MAY REDUCE TARGET DEPTH OF FOUNDATIONS. Furthermore, ex-situ uncontrolled fill observed onsite (see site photos).
Impacting Vegetation (Onsite or on adjacent sites)	
Proposed or recent removal of building/structures	Unknown
Proposed or recent removal of trees	Large trees to be removed as discussed above
Excavation Difficulties	Possible – near surface granite floaters and bedrock known to occur in localised landscape.
Bulk Earthworks (Completed/partially completed/not proposed)	None

5. Recommended Foundation Design Parameters

٠	The following	foundation	design	parameters	are recommended:
---	---------------	------------	--------	------------	------------------

	Reco	mmended Footing D	esigns
	Slab	Pad/Strip	Pier/Pile Footings
Founding material *1	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK
Recommended Minimum Founding Depth (mm or m)	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL	PIER/PILE SUPPOPRTED MIN 2000MM OR REFUSAL
Max Allowable Bearing Pressure (kPa)	100	100	100
Indicative Soil Ys (mm)	20-40mm	20-40mm	20-40mm

^{*1}Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

It must be emphasised that in classifying the site, Strata Geoscience and Environmental P/L did not place sole reliance on the soil bore logs as a means of being an absolute representation of all subsurface features and conditions over the site. Any persons relying upon this document must not assume that subsurface conditions across the entire site will be identical to that represented in the bore logs.

Relevant information and guidance used in classifying the site includes several or all of the following:

1. Publications from Standards Australia, CSIRO, Foundation and Footings Society, Australian Geomechanics Society.

2. Well established and relevant knowledge of the behaviour of local soils and processes affecting soil behaviour (eg ephemeral springs, perched water tables, unstable slopes, collapsing soils, vegetation, etc).

3. The broad experience of the site classifier.

4. Specific investigations from nearby areas.

5. Past Performance of existing structures and foundations (where relevant and known)

6. Engineering Assessment of likely characteristic ground surface movement (ys) based upon estimated lpt values and/or laboratory derived lss values where relevant.

6. Construction Recommendations

6.1 Pre Construction

- Results of this investigation MUST be confirmed when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report.
- Design depth to refusal for bored pier/driven pile designs may show variability over the site and may need to be considered in any contractor quotation. Construction machinery will show different depths to refusal that what is indicated in this investigation.
- Test pitting/piling with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Screw piles should be driven to a minimum depth as nominated by the foundation designer to ensure lateral stability of each pile. Test piling at all corners of each building must occur to ensure this.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.
- Where rock is encountered the in relation to the Foundation Recommendations the following terms should be noted as per AS2870-2011 Residential Slabs and Footings
 - Rock Outcrops Where a footing or edge beam encounters a single local rock outcrop over a length less than 1 m, the depth of the footing or edge beam may be reduced by up to one-third, provided the amount of top and bottom reinforcement is doubled and extended 500 mm past the section with reduced depth. Alternatively, the footing may be stepped or raised, provided the structural stiffness is preserved as per AS2870-2011 Clause 3.1.6.
 - Partial Rock Outcrops Where part of the footing is on rock and part is on soil, provision for movement at the change between the two types of foundation shall be made by articulation of the superstructure or strengthening of the footing system. On Reactive Sites (M, H1 and H2) where part of the footing is on rock and part is on soil, the design shall be in accordance with engineering principles as per AS2870-2011 Clause 3.1.7.
 - Design for complete rock foundation Where the edge beam or footing is to be founded entirely on rock, the footing or beam may be replaced by a levelling pad of concrete or mortar as per AS2870-2011 Clause 3.1.8.

- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) MUST be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- Uncontrolled Fill Any FILLING that does not meet the requirements of AS2870- 2011 Clause 2.5.3(b). This clause allows up to 0.8m of uncontrolled SAND FILL and up to 0.4m of uncontrolled CLAY FILL without impacting on the above site classification following that all foundations are founded on the natural soils through the filling.
- **Rolled Fill** Consists of material compacted in layers by repeated rolling with an excavator or similar equipment. The depth of rolled fill shall not exceed 0.6m compacted in layers of not more than 0.3m thick for sand material or 0.3m compacted in layers of not more than 0.15m thick for other materials as per AS2870-2011 Clause 6.4.2(b).
- Controlled Fill Fill that will be required to support structures or associated pavements, or for which engineering properties are to be controlled – Refer to AS2870-2011 Clauses 2.5.3, 2.5.3(a), and 6.4.2(a) – i.e. where a specification has been provided on the type, quality, and compaction requirements for filling at a site and the earthworks have been deemed compliant or have complied with the requirements of the specification.
- The recommendations of CSIRO Building Technology File 18 be adopted.
- An apron of paving around the building perimeter sloping away from foundations with a minimum fall of 1:60 be considered for Class M, H-1, H-2, E and P sites.

6.2 During Construction

Throughout construction it is highly recommended that:

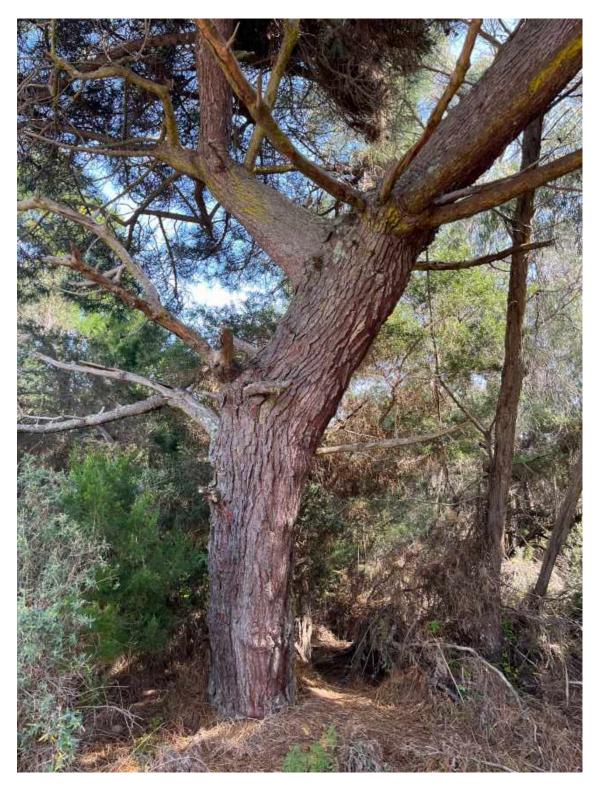
- Inspection of the natural soil surface after footings excavation but prior to construction is required by Strata Geoscience and Environmental in accordance with Appendix D of AS 2870-2011. Failure to comply with this recommendation will void all classifications and recommendations contained in this report. The site classification may be changed at this time depending upon the nature of the founding surface which is dependant in part on foundation design.
- Site cutting should be avoided if possible and if it occurs below 500mmbgs occurs then reclassification MUST be commissioned.
- Fill MUST NOT be used as a founding substrate.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Shrinkage cracking is almost inevitable in concrete slabs and is associated with the drying process. Therefore care must be taken

where brittle or sensitive floor coverings are proposed, or where a polished slab is planned. The risk of damage can be reduced by not installing floor coverings until after shrinkage has occurred, which can take in excess of 3 months, or by using flexible mortars and appropriate sheeting material.

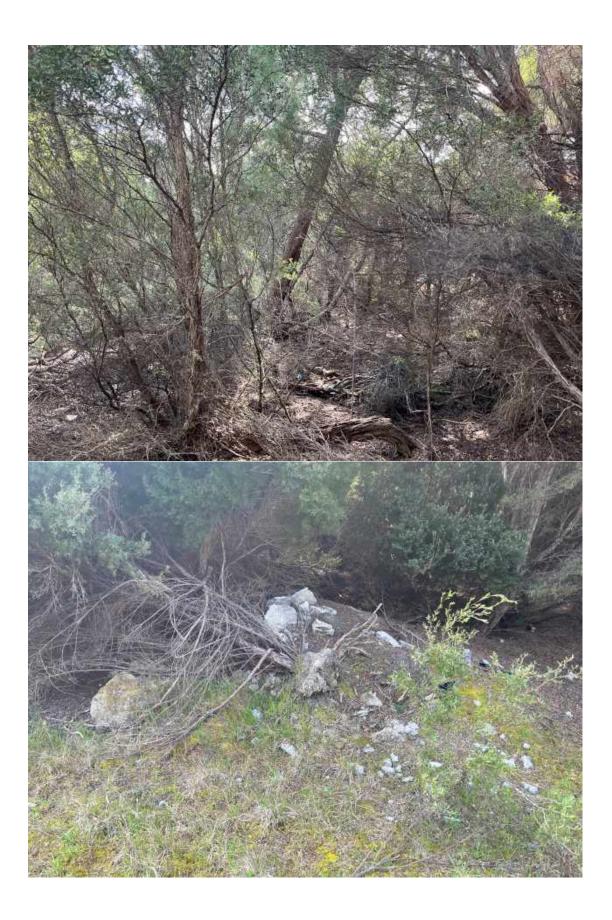
• Vertical barriers to prevent root incursions around founding zones should be considered in areas where gardens are to be established near foundations.

6.3 Post Construction

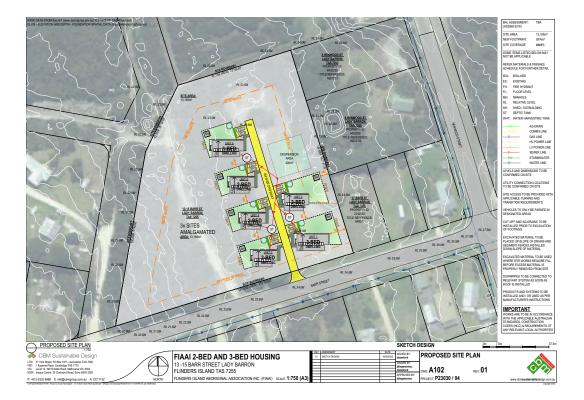
After construction, there are certain practices that the owner/occupier should be aware of to prevent excessive foundation movements. The owner will be responsible for any damage or loss associated with disregard for the recommendations contained in CSIRO Building Technology Files 18 "Foundation Maintenance and Footings Performances: A Homeowners Guide" available through CSIRO.


It is furthermore recommended that:

- Gardens or large shrubs or trees must not be established immediately adjacent to foundations
- Garden beds or lawn near foundations must not be excessively watered.
- Leaking underground services and downpipes or gutters must be fixed immediately.


S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

Appendix 1 Site Photos



	2	strata	Indicative Profile Lo	9 внот
Clie	nt			Coords
Drat	ject: Type:	2		Bearing: Dip:
Fuid	ng Mot			RL SEE WS Logged by Date:
	6	Meterial Description	Soil :: Rock Westhering Prac.	Specing (r Sampling and Insite Test
Depth (mm)	Graphic Log		SelfVictors SelfVictors SelfVictors SelfUctors SelfUctors SelfUctors SelfUctors Mardium Mardiu	Hand Test Results and
-		BROWNISH GREY SAND	(SM) LOOSE, NP	icici≓FE Contrents
500	H	TRENDING GREY SAND	SP)LOOSE NP	
		TRENDING MEDIUM DEN	SE	
1000			AND (SG) OENSE, NEAR REFUSAL	
		ALL NUMBER OF A LECT O		
1600				
2000				
2500				
3000				
3500				
4000				
4500				
6000				
398			BORE TERMINATED AT 1.3 M	
-	H			

Appendix 2 Indicative Bore Logs

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geoleohnical Purposes: Refer to AS1726-1993 (Appendix A). The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

Maj	or Divisions	Particle size mm	USCS Group Symbol	Typical Names		Labo	ratory Cla	estilication		
	BOULDERS				% < 0.075 mm (2)	Plasticity of fine fraction	$C_4 - \frac{D_{61}}{D_{10}}$	$C = \frac{(D_{m})^{2}}{(D_{m})(D_{m})}$	NOTES	
sol.s m is larger than 0.075 mm)	COBBLES	200			1					
		63	GW	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	-	×	Between 1 and 3	(1) Identify fines by the method giver	
	GRAVELS (more than	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	0-5 12-50	-		comply with bove	for fine-grained solis.	
61mm	half of coarse	medium	GM	Silty gravels, gravel-sand-silt mixtures (1)	12-50	Below 'A' line or Pi-4	_	- 24		
COARSE CRANED more than helf of material less than 63 m	fraction is larger than 2.36 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	4 12-50 12-50	Above 'A' line and Pi>7	-	-	(2) Bordenine	
	SANDS (more than half of coarse fraction is smaller than 2.36 mm)	s coarse	sw	Weil graded sands and gravely sands, little or no fines	D-5	-	>6	Between 1 and 3	classifications occur when the percentage of fines (fraction	
			0.6	0.6	SP	Poorly graded sands and gravely sands, little or no fines	0 04po 0-5	-		comply with bove
		medium 0.2	SM	Bility sands, sand silt mixtures (1)	8 12-50	Below 'A' line or Pi<4		-	than 12%. Bordenine	
*		fne 0.075	80	Clayey sands, sand-clay mixtures (1)	12-50	Above 'A' line and PI>7		-	classifications require the use of SP-SM, GW- GC.	
0075 mm		M		Inorganic sits, very fine sands, rock flour, sity or clayey fine sands or clayey sits with sight plasticity	deedfcation	rt ined soils				
-S. Is smaller than	SILTS & CLA (Liquid Limit	0.000	а а	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, sity clays, lean clays	g 63 mm for a			n of coarse gr dun Hah		
			OL	Organic slits and clays of low plasticity	preserve in			1	1 AN	
CRAINED W		2	мн	Inorganic sits, mic- aceous or diato-maceous fine sands or sits, elastic sits	Plastic Index (%)			1	Nor Maria	
1	SILTS & CLA (Liquid Limit	11 S	сн	Inorganic clays of high plasticity, fat clays	0.	and the second	1	-	ni i	
If of matter			он	Organic sits and clays of high plasticity	prodetion	Za		6a.		
more than half of	HIGHLY OR	GANIC	PT	Peat and other highly organic soils	Use the gr		n a Liqu	id Limit (%)		

Soil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary), Refer to AS 1725-1993, A2.4 and A3.3.

Soll Moleture Condition: Is based on the appearance and feel of soll. Refer to AS 1726-1993, A2.5.

Term	Description	
Dry	Cohesive soils; hard and triable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.	
Moist	Soli feels cool, dankened in colour. Cohesive soils can be moulded, Granular soils tend to cohere.	
Wet	Soli feels cool, darkened in colour. Cohesive solis usually weakened and free water forms on hands when handling. Granular solis tend to cohere and free water forms on hands when handling.	

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s.) can be assessed using a simple field tool appropriate for cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table A4.

	Consistency -	Essentially	Cohesive	Solic		Soil Parts	cie Sizec		
Төпт	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength 6, (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range		
Very soft	Oozes between fingers when squeezed in hand.	٧s	D-2	<12	<3	BOULDERS COBBLES			>200 mm 63-200 mm
Soft	Easily moulded with fingers.	s	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm		
Film	Can be moulded by strong pressure of fingers.	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm		
SUT	Not possible to mould with fingers.	81	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm		
Very stiff		VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm		
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400				

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Solis: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table AS; BS5930-1999, p117.

Consistency - Essentially Non-Cohesive Solis							
Term	Symbol	SPT N Value	Field Guide	Density Index (%)			
Very loose	VL.	04	Foot imprints readily	0-15			
Loose	L	4-10	Shovels Easly	15-35			
Medium dense	MD	10-30	Shoveling difficult	35-65			
Dense	D	30-50	Pick required	65-85			
Very dense	vo	>50	Picking difficult	85-100			

Standard Penetration Test (SPT): Refer to: AS 1289.6.3.1-2004. Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment
4, 7, 11	N=18	Full penetration; N is reported on engineering borehole log
18, 27, 32	N=59	Full penetration; N is reported on engineering borehole log
4, 18, 30/15 mm	N is not reported	30 blows causes less than 100 mm penetration (3 st interval) - test discontinued
3G/80 mm	N is not reported	30 blows causes less than 100 mm penetration (1 ^{et} Interval) – test discontinued
TW .	N<1	Rod weight only causes full penetration
hw	N=1	Hammer and rod weight only causes full penetration
no	N is not reported	Hammer bouncing for 5 consecutive blows with no measurable penetration - test discontinued

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including:

- (s) Rock type (Table A5, (a) and (b))
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A3, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soil. Boundaries between weathering grades may be abrupt or gradational.

		Rook Material Weathering Classification
Weathering Grade	Symbol	Definition
Residual Soli	RS	Soli-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerals. The intact rock strength is generally much weaker than that of the fresh rock.
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerals. The intact rock strength is usually noticeably weaker than that of the fresh rock.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.
Notes:	ð	ż.

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

2. Extremely weathered rock is described in terms of soil engineering properties.

3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.

The "Distinctly Weathered (DW)" class as defined in AS 1725-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rook Strength):

Strength of Rook Material

Term	Symbol	mbol Index (MPa)		Field Guide to Strength				
Extremely Low	EL	s0.03		Easity removided by hand to a material with soil properties.				
Very Low	VL.	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.				
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm biows of the pick point; has dual sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.				
Medium	м	×0.3	\$1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.				
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock rings under hammer.				
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.				
Extremely High	EH	>10	÷.	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.				

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Discontinuity	Decartption	Refer to AS	1725-1993.	Table A10.

Aniso	tropio Fabrio	Roughn	OGE (S	.g. Planar,	Smooth is abbreviated Pi-	(Sm) Ca	895	Other	
BED	Bedding				Rough or Irregular (Ro)		1	CIY	Clay
FOL	Foliation	Stepped	Stepped (Stp)		Smooth (Sm)		1	Fe	tron
LIN	Mineral lineation				Slickensided (SI) III			Co	Coal
	Defect Type				Rough (Ro)		IV.	Carb	Carbonaceous
P	Lamination Parting	Undulati	Undulating (Un)		Smooth (Sm)	- 8-	v	Sint	Soli Infil Zone
BP	Bedding Parting				Slickensided (SI)		VI	œ	Quartz.
FP	Cleavage / Foliation Parting				Rough (Ro)	Ro) VII		CA	Calcite
J, JS	Joint, Joints	Planar (PQ		Smooth (Sm) VIII		VIII	CIN	Chiorite
sz	Sheared Zone	3	Slickensided (SI)			IX.	Py	Pyrite	
CZ	Crushed Zone	Apertur		Infilling				int	Intersecting
BZ	Broken Zone	Closed	CD	No visible	coating or infil	Clean	Cn	Inc	Incipient
HFZ	Highly Fractured Zone	Open	OP	Surfaces	discoloured by mineral/s	Stain	St	DI	Drilling Induced
AZ	Alteration Zone	Filed	FL	Visible m	ineral or soll infili <1mm	Veneer	Vr	н	Horizontal
VN	Vein	Tight	Π.	Visible m	ineral or soli infil >1mm	Coating	Ct	V	Vertical

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spaoing: On the geolechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

D	elect Spacing		Bedding Thic (Sedimentary Rook	승규가의 공격을 물러 가지 않는 것이 같이 했다.	Defect Spacing in 3D		
Spacing/Width (mm)	Descriptor	Symbol	Decortptor	Spaoing/Width (mm)	Term	Description	
	· · · · · ·		Thinly Laminated	<6	Blocky	Equidimensional	
<20	Extremely Close	EC	Thickly Laminated	6-20	Tabular	Thickness much less than length or width	
20 - 60	Very Close	vc	Very Thinly Bedded	20 - 60	Columnar	Height much greater than cross section	
60 - 200	Close	c	Thinly Bedded	60-200		Str.	
200 ~ 600	Medium	м	Medium Bedded	200 - 600	Defect Persistence		
600 - 2000	Wide	w	Thickly Bedded	600 - 2000	(areal extent)		
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000	100		
>6000	Extremely Wide	EW	-	+ +	Trace lengt	h of defect given in metres	
	the second s						

Symbols

The itst below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Res	utis	1	Test Symbols
PI	Plasticity Index	¢	Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C.,	Undrained Cohesion	SPT	Standard Penetration Test
u	Liquidity index	¢ _s	Residual Cohesion	CPTu	Cone Penetrometer (Plezocorie) Test
00	Dry Density	ø	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0,	Undrained Angle of Internal Priction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	۴.	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	¢,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
OC	Organic Content	π,	Coefficient of Volume Compressibility	UCS	Uniaxial Compressive Strength
WPI	Weighted Plasticity Index	S-4	Coefficient of Secondary Compression	Pm	Pressuremeter

	25	Test Resu	its.	1	Test Symbols
WLS	Weighted Linear Shrinkage		Voids Ratio	FSV	Field Shear Vane
DoS	Degree of Saturation	ď	Constant Volume Friction Angle	DGT	Direct Shear Test
APD	Apparent Particle Density	q,/q,	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate
$\mathbf{S}_{\mathbf{k}}$	Undrained Shear Strength	q,	PANDA Cone Resistance	٨	Point Load Test (axial)
q,	Unconfined Compressive Strength	400	Point Load Strength Index	D	Point Load Test (diametral)
R	Total Core Recovery	RQD	Rock Quality Designation	L	Point Load Test (Irregular lump)

Groundwater level on the date shown	Water Inflow	- Water Outflow	l
-------------------------------------	--------------	-----------------	---

Appendix 3 Site Classification and Plumbing Specifications

AS2870-2011 SOIL CLASSIFICATION	ON SITE SOIL CONDITIONS	DIFFERENTIAL	SEWER & Stormwater GRADE	SWIVEL* (Sbeen Expansion)	SWIVEL/COMBO * (100mm Expansion)	EXPANDA JOINTS *	CREEP SLOPE SITES	DRAWING
A	Most Sand & Rock sites	0 + 10mm	1:60 Minimum	Not necessary	Not necessary	Not necessary	These are termed P sites and are referred to in Drawing SP 105	Na
s	Slightly mactive Solts	10 - 20mm						N/a
м	Moderatively reactive soils	20 - 40mm						SP 100 8 SP 101
н	Highly reactive solls	40 - 60mm	1:40 Minimum	Minimum and an Expansion Joint at every riser Not applicable	using either or both Bend or	At Junctions within 1 mtr of internal building footprint and every 6 mtrs. As per Differential Movement 5ee AS2032-2006 Chause 6.4.2.2.4 for suspension requirements		SP 102
H2	Very highly reactive soils	60 - 75mm						5P 102A
E	Extremely reactive solts	75 + mm						SP 102A
Р	Solis affected by Abnormal moisture and conditions	Fran. 20 + mm	As per Offerential Novement	to suspended sub-floors	alab			5P 105A
E: Engineer or loca	al Authority detai	is take preceden	ce over this ch	wrt	To be read	in conjunction with Sta	rm Plastics de	awings sho
					GRADE RATIO	FALL IN 10 mtrs	ANGLE	GRADE %
470 onn		-1.1	1	-	1:100	100 mm	.57	1.0
110 000	5 N - 4	T	2	2	1:80	125 mm	.71	1.25
	1 23000	C.	*) E	Gentleme Balasi I Tjorte Akti	1:60	167 mm	.95	1.65
((C	0	SWIVEL Science Colonautorit Conservation	~ F	- Ta T	1:50	200 mm	1.14	2.0
			2.0		201408	5.585.547 S.555 C	VII.45	2.5

CERTIFICATE	OF QUALIFIED PERSON – AS	SES	SABLE Section 321			
To:	CBM SUSTAINABLE DESIGN		Owner /AgentFormAddressFormSuburb/postcode			
Qualified perso	on details:					
Qualified person:	SVEN NIELSEN					
Address:	17 LITTLE ARTHUR STREET		Phone No: 0413545358			
	NORTH HOBART		Fax No:			
Licence No: AO	1443 – SS Email address: <u>SVEN@STRATACONSULTING.COM.AU</u>					
Qualifications and Insurance details:	MEngSc CPSS PI INSURANCE PUBLIC LIABILITY CONTACT FOR DETAILS		otion from Column 3 of the r of Building Control's ination)			
Speciality area of expertise:	INDICATIVE Site Classification to AS2870-2011/AS4055-2006	otion from Column 4 of the r of Building Control's ination)				
Details of work	:					
Address:	UNIT 5 13-15 BARR STREET		Lot No:			
	LADY BARRON		Certificate of title No:			
The assessable item related to this certificate:			 (description of the assessable item being certified) Assessable item includes – a material; a design a form of construction a document testing of a component, building system or plumbing system an inspection, or assessment, performed 			
Certificate deta	ills:					
Certificate type:	S	chedule 1	on from Column 1 of 1 of the Director of Building Determination)			
This certificate is ir	n relation to the above assessable item, at any building work, plumbing work or pl Or					

a building, temporary structure or plumbing installation:

In issuing this certificate the following matters are relevant -

Documents:	
Documents.	SR05394
Relevant	SEE REPORT WHERE RELEVANT
calculations:	
References:	
	Substance of Cortificate: (what the that is had a sufficient
AS2870-2011 A	Substance of Certificate: (what it is that is being certified)
A32070-2011 A	SSESSMENT
	Scope and/or Limitations
	NDATIONS AND WELL AS TERMS AND CONDITIONS CONTAINED WITHIN
THE RELEVANT	REPORT, ESPECIALLY NOTING:
	RING AND ARCHITECTUAL PLANS TO BE SUBMITTED TO STRATA FOR
	TION AGAINST REPORT RECOMMEDATIONS PRIOR TO
	JCTION. FAILURE TO ENSURE THIS WILL VOID ALL CLASSIFICATIONS OMMENDATIONS CONTAINED IN THE REPORT
-	
	G SURFACE INSPECTION OF ALL EXCAVATIONS PRIOR TO FION CONSTRUCTION BY STRATA IS MANDATORY AND FAILING TO
	SION THIS WILL VOID ALL CLASSIFICATIONS AND RECOMMENDATIONS
	ED IN THE REPORT. THIS IS TO ENSURE THAT ALL FOUNDATIONS ARE
	D RECOMMENDED FOUNDING SUBSTRATE AND NOT SOFT TOPSOILS
	INTROLLED FILL (WHERE PRESENT)
	UTTING BEYOND 500MM OCCURS THEN THE SITE MUST BE
	FIED IN CONSULTATION WITH STRATA.
	LID FOR 2 YEARS FROM THE DATE BELOW.
I certify the matters	s described in this certificate.

	Signed:		Certificate No:	Date:	
Qualified person:	S NIELSEN	fl	SR05394	27/9/23	

Appendix 5 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client, the Client must inform Strata in writing of that information as soon as possible. Further advice will be provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Strata is not information supplied to Strata has been provided at the Client's cost. Any report is prepared on the assumption that the instructions and information supplied by a client or all additional information clients are available to the client, the client must inform strata in writing of the services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not lia

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011, Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase. The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a change in the site classification are to be incurred by the client. Furthermore any costs associated with delayed works associated with a founding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classification s contained within this report are void. Classification is based upon a range of expected ground surface movement as indicated in AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and

accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability where any report is relied upon after three months from the date of the report, (unless otherwise provided in the report or required by the Australian Standard which the report purports to comply with), or the date when the Client advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. Soil depths and composition can vary due to natural and anthopogenic processes. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Furthermore where rocky profiles are encountered no comment is made about the potential size of liberated rocks from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- (ii) the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered in any way from the original provide by Strata.

Site Classification to AS2870-2011 - Residential Slabs and Footings

1. Introduction

Strata Geoscience and Environmental Pty Ltd was commissioned to provide a Site Classification to AS2870-2011 for:

Site Details and Ke	y Investigation Outcomes
Site Address	Unit 6 13-15 Barr Street Lady Barron
Property Owner/Client	CBM Sustainable Design
Development	New dwelling
Date of Investigation	13/9/21
Key Geotechnical Limitations to Site Development	Reactive soil phases, potential for abnormal soil moisture gradients, potential for colluvial and bedrock outcroppings
Key Recommendations	Site drainage around foundations recommended
Site Classification to AS2870-2011	Class M
Subsidiary Site Classification to AS2870-	NA
2011 (TO BE USED FOR PLUMBING	
DESIGN SEE APPENDIX 3)	
Site Classification to AS4055- 2012	N2

2. Scope

It is the scope of this investigation to consider geotechnical factors affecting the current development plan (if available). Namely;

- Geotechnical Drilling of minimum 1 Bore (s) to 1.8 m or refusal (whichever first) with logging, sampling and in-situ testing as required
- Site Classification to AS2870-2011 Residential Slabs and Footings.

The above scope has been determined in consultation with the Client and is subject to time and budgetary considerations. Geotechnical investigations are informative processes and further works may be required depending upon the findings of the results of this investigation.

3. Site Investigation

Please refer to Appendices for the results of field/laboratory investigation (where relevant) including site photographs, bore logs, bearing capacity and other relevant data.

4. Interpretation

Geotechnical Parameter	Results				
General Comments	FLAT SITE, UNIT SITED IN CLEAR AREA REMOVED FROM EXISTING VEGETATION				
Site Geology (MRT Tas 1:250000)	Dgaas				
Geotechnical Risks:					
Slope Instability	Not mapped hazard band (DPAC 2023) accessed via LISTMAP).				
Soft/Collapsing Soil	Recommend maximum 75kPa working bearing pressures at a minimum 600mm or refusal.				
Groundsurface Movement	Slight-Moderate (variability anticipated over the site).				
Erosion Potential	Soils may be sensitive to wind and water erosion. Risks to be controlled by a soil and water management plan.				
Surface Water	Not observed				
Shallow Groundwater/Perched Water	Not encountered- localised seasonal groundwater tables known to existed in localised landscape- upslope interceptor drain age around foundations required.				
Uncontrolled Fill/Disturbed Soils	None observed				
Impacting Vegetation (Onsite or on adjacent sites)	Trees onsite warranting design consideration				
Proposed or recent removal of building/structures	Unknown				
Proposed or recent removal of trees	Large trees to be removed as discussed above				
Excavation Difficulties	Possible – near surface granite floaters and bedrock known to occur in localised landscape.				
Bulk Earthworks (Completed/partially completed/not proposed)	None				

5. Recommended Foundation Design Parameters

• The following foundation design parameters are recommended:

	Reco	mmended Footing D	esigns
	Slab	Pad/Strip	Pier/Pile Footings
Founding material *1	UNDISTUBED DENSE SANDS	UNDISTUBED DENSE SANDS	UNDISTUBED DENSE SANDS (SM/SP) /CLAYEY SANDS (SC)/ ROCK
Recommended Minimum Founding Depth (mm or m)	MIN 600MM	MIN 600MM	PIER/PILE SUPPOPRTED MIN 1200MM OR REFUSAL
Max Allowable Bearing Pressure (kPa)	75	75	75
Indicative Soil Ys (mm)	20-40mm	20-40mm	20-40mm

*¹Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

It must be emphasised that in classifying the site, Strata Geoscience and Environmental P/L did not place sole reliance on the soil bore logs as a means of being an absolute representation of all subsurface features and conditions over the site. Any persons relying upon this document must not assume that subsurface conditions across the entire site will be identical to that represented in the bore logs.

Relevant information and guidance used in classifying the site includes several or all of the following:

1. Publications from Standards Australia, CSIRO, Foundation and Footings Society, Australian Geomechanics Society.

2. Well established and relevant knowledge of the behaviour of local soils and processes affecting soil behaviour (eg ephemeral springs, perched water tables, unstable slopes, collapsing soils, vegetation, etc).

3. The broad experience of the site classifier.

4. Specific investigations from nearby areas.

5. Past Performance of existing structures and foundations (where relevant and known)

6. Engineering Assessment of likely characteristic ground surface movement (ys) based upon estimated lpt values and/or laboratory derived lss values where relevant.

6. Construction Recommendations

6.1 Pre Construction

- Results of this investigation MUST be confirmed when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report.
- Design depth to refusal for bored pier/driven pile designs may show variability over the site and may need to be considered in any contractor quotation. Construction machinery will show different depths to refusal that what is indicated in this investigation.
- Test pitting/piling with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Screw piles should be driven to a minimum depth as nominated by the foundation designer to ensure lateral stability of each pile. Test piling at all corners of each building must occur to ensure this.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.

- Where rock is encountered the in relation to the Foundation Recommendations the following terms should be noted as per AS2870-2011 Residential Slabs and Footings
 - Rock Outcrops Where a footing or edge beam encounters a single local rock outcrop over a length less than 1 m, the depth of the footing or edge beam may be reduced by up to one-third, provided the amount of top and bottom reinforcement is doubled and extended 500 mm past the section with reduced depth. Alternatively, the footing may be stepped or raised, provided the structural stiffness is preserved as per AS2870-2011 Clause 3.1.6.
 - Partial Rock Outcrops Where part of the footing is on rock and part is on soil, provision for movement at the change between the two types of foundation shall be made by articulation of the superstructure or strengthening of the footing system. On Reactive Sites (M, H1 and H2) where part of the footing is on rock and part is on soil, the design shall be in accordance with engineering principles as per AS2870-2011 Clause 3.1.7.
 - Design for complete rock foundation Where the edge beam or footing is to be founded entirely on rock, the footing or beam may be replaced by a levelling pad of concrete or mortar as per AS2870-2011 Clause 3.1.8.
- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) MUST be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- Uncontrolled Fill Any FILLING that does not meet the requirements of AS2870- 2011 Clause 2.5.3(b). This clause allows up to 0.8m of uncontrolled SAND FILL and up to 0.4m of uncontrolled CLAY FILL without impacting on the above site classification following that all foundations are founded on the natural soils through the filling.
- **Rolled Fill** Consists of material compacted in layers by repeated rolling with an excavator or similar equipment. The depth of rolled fill shall not exceed 0.6m compacted in layers of not more than 0.3m thick for sand material or 0.3m compacted in layers of not more than 0.15m thick for other materials as per AS2870-2011 Clause 6.4.2(b).
- Controlled Fill Fill that will be required to support structures or associated pavements, or for which engineering properties are to be controlled – Refer to AS2870-2011 Clauses 2.5.3, 2.5.3(a), and 6.4.2(a) – i.e. where a specification has been provided on the type, quality, and compaction requirements for filling at a site and the earthworks have been deemed compliant or have complied with the requirements of the specification.
- The recommendations of CSIRO Building Technology File 18 be adopted.
- An apron of paving around the building perimeter sloping away from foundations with a minimum fall of 1:60 be considered for Class M, H-1, H-2, E and P sites.

6.2 During Construction

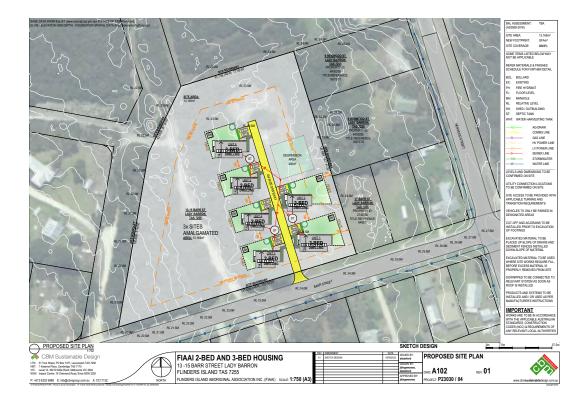
Throughout construction it is highly recommended that:

- Inspection of the natural soil surface after footings excavation but prior to construction is required by Strata Geoscience and Environmental in accordance with Appendix D of AS 2870-2011. Failure to comply with this recommendation will void all classifications and recommendations contained in this report. The site classification may be changed at this time depending upon the nature of the founding surface which is dependant in part on foundation design.
- Site cutting should be avoided if possible and if it occurs below 500mmbgs occurs then reclassification MUST be commissioned.
- Fill MUST NOT be used as a founding substrate.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Shrinkage cracking is almost inevitable in concrete slabs and is associated with the drying process. Therefore care must be taken where brittle or sensitive floor coverings are proposed, or where a polished slab is planned. The risk of damage can be reduced by not installing floor coverings until after shrinkage has occurred, which can take in excess of 3 months, or by using flexible mortars and appropriate sheeting material.
- Vertical barriers to prevent root incursions around founding zones should be considered in areas where gardens are to be established near foundations.

6.3 Post Construction

After construction, there are certain practices that the owner/occupier should be aware of to prevent excessive foundation movements. The owner will be responsible for any damage or loss associated with disregard for the recommendations contained in CSIRO Building Technology Files 18 "Foundation Maintenance and Footings Performances: A Homeowners Guide" available through CSIRO.

It is furthermore recommended that:


- Gardens or large shrubs or trees must not be established immediately adjacent to foundations
- Garden beds or lawn near foundations must not be excessively watered.
- Leaking underground services and downpipes or gutters must be fixed immediately.

S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

Client:	-	-	strata	Indicative Profile Log	BH01
Boil Book Weathering Processing (3) Sampling and having Trans. Specing (3) Sampling and having (3) Sampling (3)	Proje Dra Ty Drating	ect:			RL SEE WS Logged by
301 TRENDING GREY SAND (SP) LOOSE, NP 1	Depth (mm)	Graphic Log		V 55/10/26 Find Daries Fund Daries V 2000 Daries V 2000 Daries V 2000 Daries V 2000 Daries Very Hajh Nation	ing (1 Sampling and Insite Tex
001 001 1001 001	900		TRENDING GREY SAND	(SP)LOOSE NP	
30X 3	1000				
2000	1900				
3000 4000 4000 6000 BORE TERMINATED AT 1,5 M	2000				
400 400 400 400 BORE TERMINATED AT 1.5 M	2500	2000			
4500	3000	Sel 124 - 251 (2			
4500 6000 BORE TERMINATED AT 1,5 M	3500				
80RE TERMINATED AT 1.5 M	4000	199			
BORE TERMINATED AT 1.5 M	4500				
BORE TERMINATED AT 1.5 M	6000	1040			
	9900	1.11		BORE TERMINATED AT 1.6 M	

Appendix 2 Indicative Bore Logs

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geoleohnical Purposes: Refer to AS1726-1993 (Appendix A). The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

Maj	or Divisions	r Divisions Particle Gro				Laboratory Classification				
	BOULDERS				% < 0.075 mm (2)	Plasticity of fine fraction	$C_{e} - \frac{D_{ee}}{D_{ee}}$	$C = \frac{(D_{m})^{2}}{(D_{m})(D_{m})}$	NOTES	
(imm	COBBLES	200								
then 0.075 r		63	GW	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	-	*	Between 1 and 3	(1) Identify fines by the method giver	
m is larger 0	GRAVELS	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	0-5 12-50	-		comply with bove	for fine-grained solis.	
61mm	half of coarse	medium	GM	Silty gravels, gravel-sand-silt mixtures (1)	12-50	Below 'A' line or Pi-4	_	- 24		
Coon in	fraction is larger than 2.35 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	4 12-50 12-50	Above 'A' line and Pi>7	-	-	(2) Bordenine	
material	SANDS		sw	Weil graded sands and gravely sands, little or no fines	othe other	-	>6	Between 1 and 3	classifications occur when the percentage of fines (fraction	
then held of	(more than half of coarse	0.6	SP	Poorly graded sands and gravely sands, little or no fines	0 04po 0-5	-		comply with bove	smaller than 0.075 mm size) is greater than 5% and less	
8 5	fraction is smaller than 2.36 mm)	medium 0.2	SM	Billy sands, sand sit mixtures (1)	8 12-50	Below 'A' line or Pi<4		-	than 12%. Bordenine	
\$		fne 0.075	SC	Clayey sands, sand-clay mixtures (1)	12-50	Above 'A' line and PI>7			classifications require the use of SP-SM, GW- GC.	
0075 mm			ML	Inorganic sits, very fine sands, rock flour, sity or clayey fine sands or clayey sits with sight plasticity	deedfortion		classificat	ticity Char ion of fine gra	ined soils	
is smaller than	1. THE 2. THE THE	LTS&CLAYS quid Limit≤50%)		Inorganic clays of low to medium plasticity, gravely clays, sandy clays, sity clays, lean clays	a 63 mm for a			n of coarse gr dun Hah		
			OL	Organic silts and clays of low plasticity	preserve in			1	10	
CRAINED W			мн	Inorganic sits, mic- aceous or diato-maceous fine sands or sits, elastic sits	Plastic Index (%)				Nor Maria	
	SILTS & CLA (Liquid Limit	11 S	сн	Inorganic clays of high plasticity, fat clays	0	and the second		0 	ni i	
If of matter			он	Organic sits and clays of high plasticity	prodetion - H	Zou	-	40.		
more than half.	HIGHLY OR	GANIC	PT	Peat and other highly organic soils	Use the gr		n a Liqu	uid Limit (%)		

Soil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary), Refer to AS 1725-1993, A2.4 and A3.3.

Soll Moleture Condition: Is based on the appearance and feel of soll. Refer to AS 1726-1993, A2.5.

Term	Description	
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.	
Moist	Soli feels cool, dankened in colour. Cohesive solis can be moulded. Granular solis tend to cohere.	
Wet	Soll feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.	

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s.) can be assessed using a simple field tool appropriate for cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table A4.

	Consistency -	Soll Parti	ole Sizec				
Төпт	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength G ₂ (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range
Very soft	Oozes between fingers when squeezed in hand.	VS	0-2	<12	<5	BOULDERS COBBLES	>200 mm 63-200 mm
Soft	Easily moulded with fingers.	8	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Film	Can be moulded by strong pressure of fingers.	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
SUT		81	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Not possible to mould with fingers.	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400		

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Solis: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table AS; BS5930-1999, p117.

Consistency - Essentially Non-Cohesive Solis						
Term	Symbol	SPT N Value	Field Guide	Density Index (%)		
Very loose	VL.	04	Foot imprints readily	0-15		
Loose	L	4-10	Shovels Easly	15-35		
Medium dense	MD	10-30	Shoveling difficult	35-65		
Dense	D	30-50	Pick required	65-85		
Very dense	VD	>50	Picking difficult	85-100		

Standard Penetration Test (SPT): Refer to: AS 1289.6.3.1-2004. Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment
4, 7, 11	N=18	Full penetration; N is reported on engineering borehole log
18, 27, 32 N=59		Full penetration; N is reported on engineering borehole log
4, 18, 30/15 mm	N is not reported	30 blows causes less than 100 mm penetration (3 st interval) - test discontinued
3G/80 mm	N is not reported	30 blows causes less than 100 mm penetration (1 ⁴ Interval) – test discontinued
TW N<1		Rod weight only causes full penetration
hw	N=1	Hammer and rod weight only causes full penetration
no	N is not reported	Hammer bouncing for 5 consecutive blows with no measurable penetration - test discontinued

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including:

- (s) Rock type (Table A5, (a) and (b))
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A3, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to sol. Boundaries between weathering grades may be abrupt or gradational.

Rook Material Weathering Classification					
Weathering Grade	Symbol	Definition			
Residual Soli	RS	Soli-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.			
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.			
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerais. The intact rock strength is generally much weaker than that of the fresh rock.			
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerals. The intact rock strength is usually noticeably weaker than that of the fresh rock.			
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.			
Fresh Rock	FR	Rock shows no sign of decomposition or staining.			
Notes:	ð				

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

2. Extremely weathered rock is described in terms of soil engineering properties.

3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.

The "Distinctly Weathered (DW)" class as defined in AS 1725-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rook Strength):

Strength of Rook Material

Term	Symbol	Point Index	(MPa)	Field Guide to Strength
Extremely Low	EL	s0.03		Easity removided by hand to a material with soil properties.
Very Low	VL.	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm biows of the pick point; has dual sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	м	×0.3	\$1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock rings under hammer.
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	>10	÷.	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weater due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Discontinuity	Decartption	Refer to AS	1725-1993.	Table A10.

Aniso	tropio Fabrio	Roughn	Roughness (e.g. Planar, Smooth is abbreviated Pi / Sm) Class					Other	
BED	Bedding				Rough or Irregular (Ro)		1	CIY	Clay
FOL	Foliation	Stepped (Stp)			Smooth (Sm) II		11	Fe	tron
LIN	Mineral lineation				Slickensided (SI) III			Co	Coal
Defect Type			Rough (Ro) IV		IV.	Carb	Carbonaceous		
P	Lamination Parting	Undulating (Un)		0	Smooth (Sm) V		v	Sint	Soli Infil Zone
BP	Bedding Parting				Slickensided (SI) VI		VE	œ	Quartz.
FP	Cleavage / Foliation Parting				Rough (Ro) VII			CA	Calche
1, 15	Joint, Joints	Planar (Pl)			Smooth (Sm) VIII		VIII	Chi	Chiorite
sz	Sheared Zone				Slickensided (SI) (X		DX.	Fy	Pyrite
CZ	Crushed Zone	Apertur		Infilling				int	Intersecting
BZ	Broken Zone	Closed	CD	No visible	coating or infil	Clean	Cn	Inc	Incipient
HFZ	Highly Fractured Zone	Open	OP	Surfaces discoloured by mineral/s		Stain	St	DI	Drilling Induced
AZ	Alteration Zone	Filed	FL	Visible m	ineral or soll infili <1mm	Veneer	Vr	н	Horizontal
VN	Vein	Tight	Π.	Visible m	ineral or solt infil >1mm	Coating	Ct	V	Vertical

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spaoing: On the geolechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

D	elect Spaolog		Bedding Thic (Sedimentary Rook :	승규가의 공격을 물러 가지 않는 것이 좋다.	Defect Spacing in 3D		
Spacing/Width (mm)	Descriptor Symbol		Decoriptor	Spaoing/Width (mm)	Term	Decoription	
	Ĩ		Thinly Laminated	<6	Blocky	Equidimensional	
<20	Extremely Close	EC	Thickly Laminated	6 - 20	Tabular	Thickness much less than length or width	
20 - 60	Very Close	vc	Very Thinly Bedded	20 - 60	Columnar Height much greater t cross section		
60 - 200	Close	c	Thinly Bedded	60-200	90 1		
200 ~ 600 Medium M		м	Medium Bedded	200 - 600	Defect Persistence		
600-2000 Wide W		Thickly Bedded 600 ~ 200		(areal extent)			
2008 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000	100		
>6000	Extremely Wide	EW	-	- + +	Trace lengt	h of defect given in metres	
	the second s						

Symbols

The itst below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Res	utis	1	Test Symbols
PI	Plasticity Index	¢	Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C.,	Undrained Cohesion	SPT	Standard Penetration Test
u	Liquidity index	¢ _s	Residual Cohesion	CPTu	Cone Penetrometer (Plezocorie) Test
00	Dry Density	ø	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0.	Undrained Angle of Internal Priction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	۴.	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	¢,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
OC	Organic Content	π,	Coefficient of Volume Compressibility	UCS	Unlastal Compressive Strength
WPI	Weighted Plasticity Index	S.	Coefficient of Secondary Compression	Pm	Pressuremeter

	25	Test Resu	its.	10	Test Symbols
WLS	Weighted Linear Shrinkage		Voids Ratio	FSV	Field Shear Vane
DoS	Degree of Saturation	ď	Constant Volume Friction Angle	DGT	Direct Shear Test
APD	Apparent Particle Density	q,/q,	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate
$\mathbf{S}_{\mathbf{k}}$	Undrained Shear Strength	q,	PANDA Cone Resistance	۸	Point Load Test (axial)
٩.	Unconfined Compressive Strength	4an	Point Load Strength Index	D	Point Load Test (diametral)
R	Total Core Recovery	RQD	Rock Quality Designation	E.	Point Load Test (Irregular lump)

Groundwater level on the date shown	Water Inflow	- Water Outflow	L.
-------------------------------------	--------------	-----------------	----

Appendix 3 Site Classification and Plumbing Specifications

AS2870-2011 SOIL CLASSIFICATION	ON SITE SOIL CONDITIONS	DIFFERENTIAL	SEWER & Stormwater GRADE	SWIVEL* (Sbeen Expansion)	SWIVEL/COMBO * (100mm Expansion)	EXPANDA JOINTS *	CREEP SLOPE SITES	DRAWING
A	Most Sand & Rock sites	0 + 10mm						Na
s	Slightly mactive Solts	10 - 20mm	1:60 Mixemum	Not necessary	Not necessary	Not necessary		N/a
м	Moderatively reactive soils	20 - 40mm					These	SP 100 8 SP 101
н	Highly reactive solls	40 - 60mm		As per AS3500.5		At Junctions within 1 mtr of internal building	termed P sites and are referred to in Drawing SP 105	SP 102
H2	Very highly reactive soils	60 - 75mm	1:40 Minimum	using 2 units outside and an Expansion Joint	As necessary using either or both Bend or Straight units	footprint and every 6 mtrs. As per		5P 102A
E	Extremely reactive solts	75 + mm		at every riser Not applicable	untess suspended from	Differential Movement		SP 102A
Р	Solis affected by Abnormal moisture and conditions	Fran. 20 + mm	As per Offerential Novement	to suspended sub-floors	alab	See AS2032-2006 Clause 6.4.2.2-4 for suspension requirements		5P 105A
E: Engineer or loca	al Authority detai	is take preceden	ce over this ch	wrt	To be read	in conjunction with Sta	rm Plastics de	awings sho
					GRADE RATIO	FALL IN 10 mtrs	ANGLE	GRADE %
470 one		-1	1		1:100	100 mm	.57	1.0
	5 🖌 🔄	The		2	1:80	125 mm	.71	1.25
	1 23000	C.	*) E	Gentleme Balasi I Tjorte Akti	1:60	167 mm	.95	1.65
((C	0	SWIVEL Science Colonautorit Conservation	~ F	- Ta T	1:50	200 mm	1.14	2.0
			2.0		201408	5.585.547 S.555 C	VII.45	2.5

CERTIFICATE	OF QUALIFIED PERSON – A	SSES	SABLE	Section 321
To:	CBM SUSTAINABLE DESIGN		Owner /AgentAddressSuburb/postcode	Form 55
Qualified perso	on details:			
Qualified person:	SVEN NIELSEN			
Address:	17 LITTLE ARTHUR STREET	Phone No:	0413545358	
	NORTH HOBART	Fax No:		
Licence No: AO	andress	ATACC	DNSULTING.C	COM.AU
Qualifications and Insurance details:	MEngSc CPSS PI INSURANCE PUBLIC LIABILITY CONTACT FOR DETAILS	Directo	otion from Column 3 d r of Building Control's iination)	
Speciality area of expertise:	INDICATIVE Site Classification to AS2870-2011/AS4055-2006	Directo	iption from Column 4 r of Building Control's nination)	
Details of work				
Address:	UNIT 2 13-15 BARR STREET		Lo	ot No:
	LADY BARRON		Certificate of title	e No:
The assessable item related to this certificate:	INDICATIVE Site Classification to AS2870- 2011/AS4055-2021	-	certified) Assessable item inc - a material; - a design - a form of constr - a document	ruction nponent, building bing system
Certificate deta	ils:			
Certificate type:	Ś	Schedule	n from Column 1 of 1 of the Director of Bu Determination)	uilding
This certificate is ir	relation to the above assessable item, at ar building work, plumbing work or p Or	• •		·

a building, temporary structure or plumbing installation:

In issuing this certificate the following matters are relevant -

Documents:	
Documents.	SR05396
Relevant	SEE REPORT WHERE RELEVANT
calculations:	
References:	
	Substance of Cartificatory (1997) 1997 - 19
AS2870-2011 A	Substance of Certificate: (what it is that is being certified)
A52070-2011 A	55E55IMEINI
	Scope and/or Limitations
SEE RECOMMEN	NDATIONS AND WELL AS TERMS AND CONDITIONS CONTAINED WITHIN
THE RELEVANT	REPORT, ESPECIALLY NOTING:
	RING AND ARCHITECTUAL PLANS TO BE SUBMITTED TO STRATA FOR
	TION AGAINST REPORT RECOMMEDATIONS PRIOR TO
	JCTION. FAILURE TO ENSURE THIS WILL VOID ALL CLASSIFICATIONS
-	OMMENDATIONS CONTAINED IN THE REPORT
	G SURFACE INSPECTION OF ALL EXCAVATIONS PRIOR TO FION CONSTRUCTION BY STRATA IS MANDATORY AND FAILING TO
	SION THIS WILL VOID ALL CLASSIFICATIONS AND RECOMMENDATIONS
	ED IN THE REPORT. THIS IS TO ENSURE THAT ALL FOUNDATIONS ARE
	D RECOMMENDED FOUNDING SUBSTRATE AND NOT SOFT TOPSOILS
	INTROLLED FILL (WHERE PRESENT)
	UTTING BEYOND 500MM OCCURS THEN THE SITE MUST BE
	FIED IN CONSULTATION WITH STRATA.
	LID FOR 2 YEARS FROM THE DATE BELOW.
I certify the matters	s described in this certificate.

	Signed		Certificat	te No:	Date:
Qualified person:	S NIELSEN	fl-	SR	05396	27/9/23

Appendix 5 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client, the Client must inform Strata in writing of that information as soon as possible. Further advice will be provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Strata is not information supplied to Strata has been provided at the Client's cost. Any report is prepared on the assumption that the instructions and information supplied by a client or all additional information clients are available to the client, the client must inform strata in writing of the services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not lia

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011, Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase. The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a change in the site classification are to be incurred by the client. Furthermore any costs associated with delayed works associated with a founding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classifications contained within this report are void. Classification is based upon a range of expected ground surface movement as indicated in AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and

accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability where any report is relied upon after three months from the date of the report, (unless otherwise provided in the report or required by the Australian Standard which the report purports to comply with), or the date when the Client advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. Soil depths and composition can vary due to natural and anthopogenic processes. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Furthermore where rocky profiles are encountered no comment is made about the potential size of liberated rocks from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- (ii) the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered in any way from the original provide by Strata.